
Measurement of the proton scalar
polarizabilities at MAMI

Dissertation by

Edoardo Mornacchi

born in Milan

Submitted to attain
the academic degree of

Doctor of Natural Sciences

to the

Faculty of Physics, Mathematics and
Computer Science (FB 08)

of the Johannes Gutenberg-Universität Mainz

Mainz, March 2021



Measurement of the proton scalar polarizabilities at MAMI

1. Reviewer: Prof. Dr. Michael Ostrick
2. Reviewer: Prof. Dr. Lucia Masetti

Date of the defense: June, 8th 2021

Edoardo Mornacchi
A2 Collaboration
Institut für Kernphysik
Johannes Gutenberg-Universität
Johann-Joachim-Becher-Weg 45
D-55128 Mainz
emornacc@uni-mainz.de

2A



Abstract

The scalar polarizabilities, αE1 and βM1, are fundamental static properties of
the nucleon, like the mass or the charge. Together with the four spin polarizabil-
ities, they describe the response of the nucleon’s internal structure to an external
electromagnetic field. An experimental determination of these parameters is pos-
sible via nuclear Compton scattering on protons and neutrons.

Within this dissertation, Compton scattering on protons was studied in an
experiment performed at the tagged photon facility of the Mainz Microtron
(MAMI). A linearly polarized photon beam impinged on a liquid hydrogen target
and the scattered photons were detected using the Crystal Ball/TAPS calorime-
ter, which provides large acceptance together with an excellent energy and angu-
lar resolution for photon detection. The unpolarized differential cross-section and
photon beam asymmetry were measured with unprecedented precision for photon
beam energies from 85 to 140 MeV, in a scattered photon polar angle range from
30◦ to 150◦.

Using only these data, new values of the two proton scalar polarizabilities

αE1 = (11.43± 0.17± 0.59± 0.33)× 10−4fm3,

βM1 = (3.08± 0.24± 0.20± 0.28)× 10−4fm3

were extracted. The quoted uncertainties are related to the statistical and sys-
tematic errors of the experiment and to a model dependence in the extraction
of the polarizabilities, respectively. These new results have a precision which is
comparable to several current global extractions using different theoretical frame-
works and combining all previous data. They will be crucial to resolve ambiguities
in these existing extractions.

The new data provide an important contribution to the experimental Comp-
ton scattering program at MAMI. They will be used in combination with already
published results on single and double spin observables allowing for a combined
extraction of all the six proton polarizabilities from experimental data measured
at the MAMI tagged photon facility.
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Chapter 1

Introduction

A memorable series of experiments performed between 1908 and 1913 by Hans
Geiger and Ernest Mardsen, under the supervision of Ernest Rutherford, posed
the basis for the discovery of the proton. The unexpected results showed that in
every atom all the positive charge and almost all the mass is concentrated in a tiny
core, called the atomic nucleus. As is widely known, they inferred these results
by studying the angle at which an alpha particle is scattered when it impinges
on a thin gold foil [1]. They also went one step further and hypothesized that
the nucleus of an atom consists of a fixed number of the nucleus of the smallest
possible atom, hydrogen, and this is the simplest brick of matter, later called
“proton”. This new particle was considered point-like for many years, but around
the middle of the last century it became clear that, despite its name, the proton
is not a basic constituent of matter — in fact it has its own internal structure.
Since then, there have been both huge theoretical and huge experimental efforts
to describe and study the internal structure and dynamics of the proton. But
despite this, we are still far from having a complete understanding of it, as clearly
illustrated by the recent proton radius puzzle [2].

Currently the structure of the proton is partially described by the so-called
Standard Model of particle physics. It is a theoretically self-consistent model
that describes three — electromagnetic, weak and strong — out of the four (the
gravitational force is not included, yet) fundamental forces in the universe, to-
gether with all the known elementary particles. It was constructed during the
second half of the last century, collecting together all the experimental and the-
oretical efforts and results. Its current theoretical formulation was finalized with
the experimental discovery of the quarks — theoretically predicted by Murray
Gell-Mann [3] and George Zweig [4,5] in 1964 — at the Stanford Linear Acceler-
ator Center (SLAC) in 1968 [6]. In the following years, many other experimental
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confirmations, from the top quark to the very famous Higgs boson, brought more
reliability to the Standard Model. Nevertheless, it still leaves various phenomena
unexplained, such as neutrino oscillations, the emergent structure of the hadrons,
or the incorporation of the last fundamental interaction: gravitation. This indi-
cates that still a lot of effort is needed to completely understand the four forces
and the theory that describes them.

The weak interaction is necessary to describe the radioactive beta decay be-
tween the subatomic particles and it is mediated by the massive vector bosons W±

and Z0. It is usually unified with the electromagnetic interaction in the so-called
ElectroWeak Theory (EWT). The latter is well described by Quantum Electro-
Dynamics (QED), governing the interactions between charged point-like particles
mediated by photons. However, when the interaction occurs among non-point-
like particles, such as protons, a model of the internal structure is also required
in order to describe the charge and magnetic distributions probed by the photon.
This last part is done by Quantum ChromoDynamics (QCD), the quantum field
theory describing the strong force, or the interaction between quarks and glu-
ons. In fact, at the scale of the proton radius (∼ 0.8 fm), the strong interaction
is responsible for linking the quarks together and confining them into hadronic
particles. At larger scales, around 1 to 3 fm, this strong force is still present,
effectively described by the exchange of mesons, and is responsible for binding
protons and neutrons together to form the nucleus of an atom. This particular be-
havior comes from the two main properties of QCD: confinement and asymptotic
freedom. The former is a consequence of the force acting between quarks, which
increases with the distance. In fact, in order to pull apart two quarks within a
hadron, a constantly increasing amount of energy is required. At some point, this
energy becomes large enough to spontaneously produce a quark-antiquark pair,
and to split the hadron into two hadrons. This property has been confirmed by
different experiments and makes it impossible to have one single isolated quark.
The second property, asymptotic freedom, causes the interaction between gluons
and quarks to become weaker and weaker as the energy scale increases (and so the
distance between them decreases). This particular behavior that earned Gross,
Wilczek and Politzer the Nobel prize in 2004, allows for perturbative QCD calcu-
lations in the high energy range. In fact, this approach provides a very powerful,
even if limited, tool to produce valid predictions in the region where QCD is dom-
inated by asymptotic freedom. In this region, the strong force coupling constant
αs is small and hence in a perturbative expansion, the higher order terms can be
neglected. On the other hand, as the distance increases and the energy decreases,
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the coupling constant becomes larger and already at the distance scale of the size
of a proton, perturbative QCD cannot provide acceptable solutions. This means
that it cannot be used to directly calculate global properties of the hadron, such
as mass, size, shape, or stiffness (polarizability). In this regime, the most promis-
ing non-perturbative approach is lattice QCD [7,8], a theory that discretizes the
space-time into a lattice of points, where the points represent the quark fields
and the links between the points are the gluons. As the lattice spacing a goes to
zero and the lattice size goes to infinity, the description of space-time becomes
more complete. On the other hand, the calculations are unfortunately incredibly
computationally expensive and they require huge clusters of computers and a lot
of machine-time. For this reason, results from lattice QCD at a = 0 are normally
extrapolated from the results obtained at bigger values of a. A different approach
is given by the effective field theories, which are models with same symmetries
as QCD that include an appropriate number of degrees of freedom to describe
the physical processes at a given energy (or distance) scale, ignoring the sub-
structures and the degrees of freedom at higher energy, or shorter distances. In
the past years, different QCD-inspired effective models have been developed, and
nowadays there is still a big common effort in trying to connect and to match
these models with the experimental results.

This thesis finds part of its motivation in this context. It aims to provide a
new high precision extraction of the scalar polarizabilities, which are structure
observables of the proton accessible via nuclear Compton scattering. Discovered
by Arthur Holly Compton in 1923 [9] (he was awarded the Nobel prize for this
four years later), it is a two-body inelastic scattering of a photon by a charged
particle that could be an electron, as in the original Compton experiment, or a
proton, as in our case:

γ + p→ γ′ + p′. (1.1)

At very low energy (few MeV), the proton can be considered a point-like particle,
and so the scattering cross-section depends only on its charge and mass. When
increasing the energy up to the pion photoproduction threshold (' 140 MeV),
the scattering cross-section starts to be sensitive to the internal structure of the
proton, and in particular to the electric and magnetic dipole scalar (spin inde-
pendent) polarizabilities, αE1 and βM1, respectively. They describe the response
of the proton structure to an electric or magnetic field. Above the pion pho-
toproduction threshold, the higher terms in the cross-section must be included,
and these include the spin polarizabilities — γE1E1, γM1M1, γE2M1 and γM1E2

— that describe the response of the proton spin to the electromagnetic interac-
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tion. In the last decade there has been significant interest in extracting both
the scalar and the spin polarizabilities using both subtracted dispersion relations
and chiral effective field theory [10–13]. In fact, in addition to being fundamen-
tal properties of the nucleon, they play a profound role in the evaluation of the
nuclear corrections to atomic energy levels. For example, the uncertainties of the
recent muonic-hydrogen experiments at the Paul Scherrer Institut (PSI) [2, 14]
are dominated by the proton polarizability contributions. More specifically, the
scalar polarizabilities affect the Lamb shift and hence the proton radius extrac-
tion, whereas the spin polarizabilities affect the hyperfine structure and hence
the extraction of the Zemach radius, which is defined as a convolution of the
charge distribution with the magnetic moment distribution. Analogous effects
arise in muonic deuterium [15]. They also play a big role in the determination
of the electromagnetic contribution to the proton-neutron mass difference [16].
Moreover, the various moments of the spin structure functions of the nucleon are
related to the spin polarizabilities and one of them, δLT , is difficult to understand
within chiral effective field theory [17]. More generally, a precise extraction of
the polarizabilities from the data can provide strong guidance by favoring, or
disfavoring, models of hadron structure and of non-perturbative QCD.

Due to this keen interest, a series of both polarized and unpolarized Comp-
ton scattering experiments was proposed and conducted at the Mainz Microtron
(MAMI) tagged photon facility in Mainz, Germany. The measurements used both
linearly and circularly polarized photon beams together with an unpolarized LH2

or a polarized butanol target. Different combinations of these beam and tar-
get configurations allowed for the measurement of single and double polarization
asymmetries (Σ3, Σ2x and Σ2z), as well as for the measurement of the unpolarized
differential cross-section. This very exciting (but complex) experimental program
has already led to the publication of the first two experimental extractions of the
spin polarizabilities from data [18, 19] as well as to the first measurement of the
beam asymmetry Σ3 below the pion photoproduction threshold [20]. The work of
this thesis is the missing part of the program on the proton, and provides a mea-
surement of the Compton scattering unpolarized differential cross-section and the
beam asymmetry Σ3 from 85 − 140 MeV, with unprecedented precision. These
results, together with those published already, will allow for a precise extraction
of all the six (two scalar + four spin) proton polarizabilities from experimental
data coming from the MAMI facility.

First, a theoretical overview of Compton scattering and the proton polariz-
abilities is given in Chapter 2, together with a discussion on the two measured



1.1. Units and conventions 5

observables (the unpolarized cross-section and the beam asymmetry) and their
sensitivity to the scalar polarizabilities. Chapter 3 is devoted to the existing ex-
perimental measurements and the different theoretical extractions of the proton
scalar polarizabilities from those data. After this, the focus will move to the
experiment, which is the main subject of all this work. Chapter 4 is dedicated to
a short description of the experimental setting used for the measurements, and
Chapter 5 to the calibration and the reconstruction of those data. Chapter 6
is focused on the analysis of the photon beam for the extraction of the degree
of linear polarization and the photon flux. In Chapter 7, the analysis that has
been done to select the final sample and to extract the observables is explained in
detail. In Chapters 8 and 9 the results of the unpolarized cross-section and beam
asymmetry Σ3 are presented, together with a discussion on the many systematic
checks done in order to assure a complete understanding of the data used. Fi-
nally, in Chapter 10 the impact of these data will be discussed, together with an
extraction of the proton scalar polarizabilities αE1 and βM1.

1.1 Units and conventions

In this dissertation, the natural units ~ = c = 1 are used. Other used conventions
are:

• the laboratory frame of reference is used for all the angles and energies, if
not differently specified,

• γ and γ′ refer to the incoming and the scattered photon, respectively,

• ωγ and ωγ′ are used to indicate the incoming and the scattered photon
energies, respectively,

• the values of the scalar polarizabilities are always reported in units of
10−4 fm3, and

• the values of the spin polarizabilities are always reported in units of 10−4 fm4.





Chapter 2

Theoretical review

The behavior of light in matter can be described by three main processes that
are prominent at different energies:

• Photoelectric effect,

• Compton scattering, including Rayleigh (scattering on a whole atom) and
Thomson (scattering on a free electron in the classic limit) scattering, and

• Pair production.

The photoelectric effect, which for hydrogen is the dominant process up to ∼
3 MeV, involves the absorption of a photon by an atomic electron that is subse-
quently ejected from the atom. Above this energy, atomic (incoherent) Compton
scattering becomes more relevant. In this process, the photon scatters on an
atomic electron, transferring part of its energy to it and allowing it to escape
from the atom. At even higher energies, the photon can interact electromagneti-
cally with the nucleus and produce a electron-positron pair, via pair production.
Even though the threshold for this process starts at 1.022 MeV (the rest mass
of the e+/e− pair), it does not become the main process for hydrogen until the
incoming photon energy reaches above 80 MeV. This is not the only pair that can
be created; if the energy is high enough also a pion or muon pair can be created
via a similar process. Additionally there are several other interesting processes
that can happen when a photon interacts with matter, and among them nuclear
Compton scattering is the one of interest for this thesis.

2.1 Nuclear Compton Scattering

In nuclear Compton scattering (from now on Compton scattering and nuclear
Compton scattering will be used interchangeably) the photon scatters on the

7
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γ(k)

N(q)

γ(k′)

N(q′)

Figure 2.1: Nuclear Compton scattering.

nucleus. As stated in the previous Chapter, this reaction can be used to probe
the electromagnetic properties of the nucleus and to access the internal structure
of its constituents, the nucleons. The case of hydrogen is of particular interest,
since it means scattering on (and therefore accessing) a single proton:

γ(k) + p(q) → γ(k′) + p(q′) (2.1)

where, k and k′ are the four-momenta of the photon in the initial and final states,
respectively, and q and q′ are the four-momenta of the proton in the initial and
final states, respectively.

2.1.1 Effective Hamiltonian

The scattering amplitude for this process can be conveniently expanded in terms
of the incident photon energy ω. In the next paragraph this expansion will be
given using the derivation formulated by Levchuk and L’vov [21] up to the fourth
order, and the interesting terms will be discussed.

2.1.1.1 Born contribution

The zeroth order expansion describes the scattering of a photon on a point-like
charged particle, and it depends only on the charge and mass of the particle. The
effective Hamiltonian for scattering on a proton can be written as:

H
(0)
eff = eϕ+

~π2

2m
, (2.2)

where m and e are the nucleon mass and charge, respectively, ϕ is the scalar
potential, and ~π is the covariant momentum defined as

~π = ~q − e ~A, (2.3)
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where ~q is the momentum and ~A is the vector potential. At the first order, the
effective Hamiltonian is also dependent on the anomalous magnetic moment κ:

H
(1)
eff = −e(1 + κ)

2m
~σ • ~H − e(1 + 2κ)

8m2
~σ • [ ~E × ~π − ~π × ~E], (2.4)

where ~E and ~H are the electric and magnetic fields, respectively, ~σ are the pro-
ton’s Pauli spin matrices, and (1 + κ)(e/2m) represents the contribution from
the magnetic moment. These first two terms are usually referred to as the “Born
contribution”.

2.1.1.2 Proton scalar polarizabilities

As the incident photon energy increases, the Born contribution is not a valid
approximation anymore, and the internal proton structure starts to play a role
in the Hamiltonian:

H
(2)
eff = −4π

[1
2
αE1

~E2 +
1

2
βM1

~H2
]
, (2.5)

where αE1 and βM1 are the static electric and magnetic scalar polarizabilities,
respectively. They describe the response of the electric and magnetic density of
the nucleon to an applied external static electromagnetic field [10].

Generally speaking, the polarizability is an intrinsic property of matter, de-
scribing the ability to form dipoles. The electric polarizability α, in particular, is
“well” known for atoms and molecules. It is the tendency of the electron cloud
of these constituents of matter to be distorted by an external electric field and
it can be defined as the ratio between the generated dipole moment ~p and the
electric field ~E. In the Centimeter–Gram–Second (CGS) units system it has the
dimension of a volume and for the atoms it usually is of the order of an atomic
volume. At a macroscopic level, the atomic polarizability is connected to the
average electric susceptibility via the Clausius-Mossotti relation [22].

The polarization mechanism inside a nucleon is far less obvious, but one could
think of a proton as a system composed of three quarks (uud) surrounded by a
cloud of charged virtual pions, quark-antiquark (qq̄) pairs whose constituents are
known as sea quarks. Similarly to what happens in an atom, an external electric
field generates a dipole moment due to the stretching of the pion cloud within
the electric field. The generated electric dipole moment ~p is proportional to the
electric field ( ~E), with αE1 being the coefficient of proportionality:

~p = 4παE1
~E. (2.6)
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In a similar way, an external magnetic field ( ~H) generates a magnetic dipole
moment (~m) in the proton that is proportional to the strength of the field itself,
with βM1 being the coefficient of proportionality:

~m = 4πβM1
~H. (2.7)

The subscript in the two polarizabilities classifies the multipole radiation: E`

(M`) indicates a electric (magnetic) dipole (` = 1) — or quadrupole (` = 2) —
radiation with total angular momentum `.

Since nearly all the mass of a nucleon comes from the binding force, it is a
much tighter system than an atom. This causes the proton polarizabilities αE1

and βM1 to be about three orders of magnitude smaller than the nucleon’s volume,
and it is therefore conventional to express them in units of 10−4 fm3.

2.1.1.3 Proton spin polarizabilities

The dependence on the spin of the proton enters at the third order in energy of
the effective Hamiltonian:

H
(3)
eff = −4π

[1
2
γE1E1~σ • ( ~E × ~̇E) +

1

2
γM1M1~σ • ( ~H × ~̇H)

− γM1E2EijσiHj + γE1M2HijσiEj

]
,

(2.8)

where ~̇E and Eij are partial derivatives with respect to time and space defined
as ~̇E = ∂t ~E and Eij = 1

2
(∇iEj + ∇jEi), respectively. Finally, the four γ fac-

tors in Eq. (2.8) — γE1E1, γM1M1, γE2M1 and γM1E2 — are the so-called spin
polarizabilities. Even though they do not have a simple visualization like the
scalar polarizabilities, they can be thought of as an induced precession of the
nucleon spin, with the frequency being proportional to the magnitude of the spin
polarizabilities and the direction connected to the sign of them [23]. Two linear
combinations of the four γs can be defined, and they are known as the forward
spin polarizability [24, 25]:

γ0 = −γE1E1 − γE1M2 − γM1E2 − γM1M1 = (1.0± 0.08)× 10−4 fm4, (2.9)

and the backward spin polarizability [26]

γπ = −γE1E1 − γE1M2 + γM1E2 + γM1M1 = (8.0± 1.8)× 10−4 fm4. (2.10)
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(a) (b) (c) (d)

(e) (f)

π0

(g) (h)

Figure 2.2: Some typical intermediate states contributing to nuclear Compton
scattering. (a) and (b) represent the Born diagrams in the s- and u-channel,
respectively. (c) shows a typical resonance excitation and (d) its crossed version.
(e) and (f) show typical Nπ contributions. (g) is the pion pole diagram. (h) shows
a correlated two-pion exchange such as the σ meson.

Their names are due to the fact that they directly appear in the Compton scat-
tering cross-section at θγ′ = 0◦ and 180◦, respectively [27].

2.1.1.4 Quadrupole proton scalar polarizabilities

The Compton scattering amplitude can be extended further in the incoming pho-
ton energy ω, even if this is beyond the purpose of this thesis. The fourth order
term of the effective Hamiltonian for Compton scattering can be then written
as [27]:

H
(3)
eff = −4π

[1
2
αEν

~̇E2 +
1

2
βMν

~̇H2
]
− 4π

[ 1
12
αE2E

2
ij +

1

12
βM2H

2
ij

]
, (2.11)

where αE2 and βM2 are the quadrupole terms of the electric and magnetic polar-
izabilities, while αEν and βHν are the so-called dispersion polarizabilities. They
represent dispersive corrections to the static polarizabilities αE1 and βM1 and
they describe the response of the proton to time-dependent electric and magnetic
fields [28].

2.1.2 Differential cross-section

The Low-Energy eXpansion (LEX) of the Compton scattering cross-section has
been developed by Petrun’kin [29, 30] up to the order ω2. It is usually divided
into two parts: ( dσ

dΩ

)
Pet

=
( dσ
dΩ

)
point

+
( dσ
dΩ

)
pol
, (2.12)
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Figure 2.3: Differential cross-section for nuclear Compton scattering on the pro-
ton, plotted as a function of the incoming photon energy ωγ, for fixed scattering
angle θγ′ = 135◦. The curves represent the Klein-Nishina cross-section (green,
dashed-dotted-dotted), the Powell cross-section (cyan, long dashed), the Powell
cross-section with the contribution from the π0 pole (blue, short dashed), the
Low-Energy eXpansion (LEX) that also includes the leading order contribution
from the two scalar polarizabilities (red, dashed-dotted), and the full cross-section
calculation from fixed-t subtracted dispersion relations (gray, solid). The points
represent some of the available experimental results from different experiments
presented in Section 3.1. The higher order terms become more and more impor-
tant with increasing photon energy, in particular after the pion threshold seen at
about 150 MeV.
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where the first term on the right side describes Compton scattering on a point-like
particle, while the second term accounts for the contribution from the polariz-
abilities.

2.1.2.1 Point-like contribution

The Compton scattering cross-section of a point-like proton is the so-called Born
term described in Section 2.1.1.1, represented in the diagrams in Figs. 2.2a
and 2.2b. For incoming photon energy approaching zero, i.e. ω → 0, the cross-
section depends only on the mass and the charge of the proton corresponding to
the well-known Thomson scattering formula:

( dσ
dΩ

)
Th

=
1

2

(e2
m

)2
[1 + z2], (2.13)

where z = cos θγ′ .
( dσ
dΩ

)
point

has another term that depends on the anomalous
component of the magnetic moment k, and these two terms together give the
final expression for the Born contribution [31]:

( dσ
dΩ

)
point

=
1

2

(
e2

m

)2(
ω′

ω

)2

×
{
1+z2+

ωω′

m2
([1−z]2+ao+a1z+a2z2)

}
, (2.14)

where the coefficients are:

a0 = 2κ+
9

2
κ2 + 3κ3 +

3

4
κ4, (2.15)

a1 = −4κ− 5κ2 − 2κ3, (2.16)

a2 = 2κ+
1

2
κ2 − κ3 − 1

4
κ4. (2.17)

Moreover, the energy of the scattered photon ω′ in Eq. (2.14) can be calculated
with the standard Compton scattering formula:

ω′ =
ω

1 + (ω/m)(1− z)
. (2.18)

In the literature, the cross-section for a point-like particle with an anomalous
magnetic moment κ is usually shown in the form evaluated by Powell [32], that
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looks slightly different from the one in Eq. (2.14), even though they are equivalent:

( dσ
dΩ

)
Pow

=
1

2

(e2
m

)2(ω′

ω

)2{ ω
ω′ +

ω′

ω
− (1− z2)

+ κ
ωω′

m2
2(1− z)2

+ κ2
ωω′

m2

[
4(1− z) +

1

2
(1− z)2

]
+ κ3

ωω′

m2
[2(1− z) + (1− z)2]

+ κ4
ωω′

m2

[
1 +

1

2
(1− z)2

]}
.

(2.19)

It is interesting (and straightforward) to note that for κ = 0, one obtains the
well-known Klein-Nishina cross-section [33], the first line in Eq. (2.19), that cor-
responds to scattering on a point-like charged particle with spin-1/2. The effect
of the anomalous magnetic moment on the unpolarized cross-section can be seen
in Fig. 2.3, as the difference between the Klein-Nishina and the Powell curves.

2.1.2.2 Polarization contribution

The second term on the right in Eq. (2.12) includes information on the internal
structure of the proton and it is expressed in terms of the two scalar polarizabil-
ities αE1 and βM1:( dσ

dΩ

)
pol

= −ωω′
(ω′

ω

)2 e2
m

[αE1 + βM1

2
(1 + z)2 +

αE1 − βM1

2
(1− z)2

]
. (2.20)

The contribution of the scalar polarizabilities to the cross-section can be seen
in Fig. 2.3, as the difference between the Powell calculation and the LEX. The
equation developed by Petrun’kin does not include any terms higher than ω2,
so the spin polarizabilities do not enter in Eq. (2.20). These terms were further
developed by Guiaşu [34, 35], but the equation will be omitted since it is quite
lengthy and beyond the scope of the thesis.

2.1.2.3 π0-pole contribution

The LEX of the differential cross-section in Eq. (2.20), discussed in the last para-
graph, is valid at forward angles. At larger angles and energies & 50 MeV, the
contribution from the so-called π0 pole term becomes relevant and cannot be ne-
glected anymore [34,35], as can be seen in Fig. 2.3 from the comparison between
the cyan and the blue curves. This term comes from a π0 created in the inter-



2.1. Nuclear Compton Scattering 15

mediate state that couples to the incoming and outgoing photons, from one side,
and to the nucleon on the other, as sketched in the diagram in Fig. 2.2g. Due to
the small width of the π0 resonance, this contribution is described by a pole in
the t-channel at t = m2

π (with t being the Mandelstam variable in Eq. (2.24)) [36].
This additional contribution was calculated by Guiaşu and colleagues [34,35], and
it should be added to the cross-section in Eq. (2.12):

( dσ
dΩ

)
Gui

=
( dσ
dΩ

)
Pet

+
2

m2
π

ωω′

m2

(ω′

ω

)2
(1− z)Bπ(Bπ + E), (2.21)

where the two coefficients are:

Bπ =
mπ

16π
gπNNFπ0γγ

t

m2
π − t

(2.22)

E =
e2

m

mπ

2
[1− z + k2 + k(3− z)]. (2.23)

In Eq. (2.22), t = (k − k′)2 = −2ωω′(1 − z) is the four-momentum transfer
squared, and Fπ0γγ and gπNN are the π0γγ and the πNN coupling constants.

2.1.3 Dispersion relation at fixed-t

The low-energy expansion calculation described in the last sections is a very useful
tool to calculate the Compton cross-section at very low incoming photon energy
ω. On the other hand, Fig. 2.3 shows that this approximation is in agreement with
the data only for ω . 100 MeV. Above this energy, the use of a more fundamental
theory is needed. Unfortunately, while perturbative QCD works very well at high
energies, at low energies — as a result of the confinement — quarks and gluons
cannot be used anymore as relevant degrees of freedom. In this energy range
therefore a different approach is needed. The effort of the theorists in the last
decades was mainly focused on the development of two different frameworks:
chiral perturbation theory, an effective field theory derived by Weinberg [37], and
dispersion relations. The former is briefly illustrated in Section 2.1.4, while the
current section is devoted to the description of the latter.

Dispersion Relations (DRs) have been successfully used in the last thirty years
to study Compton scattering for energies up to the ∆-resonance region, and it can
describe the existing experimental data very well (Fig. 2.3). Using the notation
of Eq. (2.1), we can define the well-known Mandelstam variables as:

s = (k + q)2, t = (k − k′)2 u = (k − q′)2, (2.24)
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which are constrained by
s+ t+ u = 2m2 (2.25)

with m being the mass of the nucleon. The crossing-symmetry variable (ν) can
also be defined as

ν =
s− u

4m
. (2.26)

The T -matrix from Compton scattering can be written using six independent
structure functions Ai(ν, t), with i = 1, ..., 6, first proposed in this form by L’vov,
Petrun’kin and Schumacher in 1996 [38]. These scattering amplitudes are func-
tions of the two Lorentz invariant variables ν and t, which can be written in terms
of the incident (ω) and scattered (ω′) photon energies and angle θγ′ in the lab
frame as [38]

ν = ω +
t

4m
=
ω + ω′

2
, (2.27)

t =− 4ωω′ sin(θγ′/2)2 = −2m(ω − ω′). (2.28)

The main advantages of these structure functions Ai(ν, t) are the absence of
kinematic singularities and kinematic constraints and the fact that they obey
crossing symmetry Ai(ν, t) = Ai(−ν, t). The T -matrix for the Compton scattering
can then be written as [27]:

Tfi =
{[(

1− t

4m2

)
(−A1 − A3)−

ν2

m2
A5 − A6

]
2mωω′ ~ε′∗ • ~ε

+
[(

1− t

4m2

)
(A1 − A3) +

ν2

m2
A5 − A6

]
2mωω′ ~s′∗ • ~s

−
[
A2 +

(
1 +

ω

m

)
A4 −

ν

m
A5 + A6

]
iωω′2~σ •

~̂
k′ ~ε′∗ • ~s

+
[
A2 +

(
1− ω′

m

)
A4 +

ν

m
A5 + A6

]
iω2ω′~σ •

~̂
k ~s′∗ • ~ε (2.29)

−
[
−A2 +

(
1− ω′

m

)
A4 −

ν

m
A5 + A6

]
iω2ω′~σ •

~̂
k ~ε′∗ • ~s

+
[
−A2 +

(
1 +

ω

m

)
A4 +

ν

m
A5 + A6

]
iωω′2~σ •

~̂
k′ ~s′∗ • ~ε

−
[
A5 + A6

]
2iνωω′~σ • ~ε′∗ × ~ε

+
[
A5 − A6

]
2iνωω′~σ • ~s′∗ × ~s

} 1

N(t)
,

where ~ε and ~ε′ are the polarization vectors of the incoming and the scattered
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photons, respectively, and the two magnetic vectors ~s and ~s′ are defined as:

~s =
~̂
k × ~ε, ~s′ =

~̂
k′ × ~ε′, (2.30)

and

N(t) =

√
1− t

4m2
. (2.31)

The T -matrix of Eq. (2.29) can be used to calculate the differential cross-section
as:

dσ

dΩ
=

1

64π2m2

(ω′

ω

)2
|Tfi|2, in the lab frame, or

dσ

dΩ
=

1

64π2s
|Tfi|2, in the c.m. frame. (2.32)

The properties of the amplitudes Ai(ν, t) have been described in detail by
Pasquini, Drechsel and Vanderhaeghen [10, 39, 40] using dispersion relations.
First, it is convenient to decompose these invariant amplitudes into Born and
non-Born contributions [27], similarly to what has been done for the LEX:

Ai(ν, t) = AB
i (ν, t) + Ai(ν, t)

NB (i = 1, ..., 6). (2.33)

The amplitudes now fulfill unsubtracted DRs at fixed-t, and so we can express
the real part of each amplitude — Re(Ai(ν, t)) — in relation to the imaginary
part as:

Re(Ai(ν, t)) = AB
i (ν, t) +

2

π
P

∫ +∞

νthr

dν ′ν ′

ν ′2 − ν2
Ims(Ai(ν

′, t)), (2.34)

where P is the notation for the Cauchy principal value and Ims(Ai(ν, t)) are the
discontinuities in the s-channel cut of the Compton scattering. Each amplitude
Ai can be then reconstructed from the Born part, including also the π0-pole
contribution, and its imaginary part Ims(Ai). The latter are calculated from the
unitarity relation, taking into account the pion-nucleon intermediate states (e.g.
Fig. 2.2e) and so the integral starts from the pion production threshold νthr:

νthr = mπ +
2m2

π + t

4m
. (2.35)

This can be observed also in Fig. 2.3, where the DR calculation shows a kink
after crossing the pion threshold.

For ν → +∞, the integral part of the unsubtracted DRs in Eq. (2.34) does
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not converge for the amplitudes A1 and A2 [41]. To avoid this behavior and to
make sure that all terms converge, the fixed-t dispersion relations are calculated
at ν = 0 and subtracted from the one in Eq. (2.34), resulting in:

Re(Ai(ν, t)) = AB
i (ν, t) +

[
Ai(0, t)− AB

i (0, t)
]
+

2

π
ν2P

∫ +∞

νthr

dν ′ Ims(Ai(ν
′, t))

ν ′(ν ′2 − ν2)
.

(2.36)
The two additional powers of ν ′ in the denominator ensure that these once-
subtracted DRs now converge for all of the scattering amplitudes Ai(ν, t). More-
over, due the energy denominator 1/(ν ′(ν ′2 − ν2)), the most important contri-
bution to the dispersion integral can be evaluated using the existing empirical
data on single and double pion photoproduction up to ωγ ∼ 1.5 GeV, while the
mechanisms involving more pions or heavier mesons in the intermediate states
are largely suppressed. Usually, these contributions are calculated using the mul-
tipole amplitudes from different models, e.g. SAID [42,43] and MAID [44] among
the others.

The six subtraction functions Ai(ν, t) of Eq. (2.36) can be expressed using
once-subtracted DRs in the variable t [40]:

Ai(0, t)− AB
i (0, t) =

[
Ai(0, 0)− AB

i (0, 0)
]
+
[
At−pole

i (0, t)− At−pole
i (0, 0)

]
+
t

π

∫ −2m2
π−4mmπ

−∞

dt′ Imt(Ai(0, t
′))

t′(t′ − t)

+
t

π

∫ +∞

4m2
π

dt′ Imt(Ai(0, t
′))

t′(t′ − t)
,

(2.37)
where Ai(0, t)

t−pole is the contribution of the poles in the t-channel (e.g. the π0

pole for i = 2, see [41]). The subtraction constants

ai = Ai(0, 0)− AB
i (0, 0) (2.38)

are of particular interest for us since they are related to the polarizabilities. The
two scalar static polarizabilities, αE1 and βM1, introduced in Section 2.1.1.2, can
be written as:

αE1 = − 1

4π
(a1 + a3 + a6), βM1 =

1

4π
(a1 − a3 − a6), (2.39)

and the four spin polarizabilities — γE1E1, γM1M1, γE2M1 and γM1E2 — introduced
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in Section 2.1.1.3 can be written as:

γE1E1 =
1

8πm
(a2 − a4 + 2a5 + a6), γE1M2 =

1

8πm
(a2 − a4 − a6), (2.40)

γM1M1 =
−1

8πm
(a2 + a4 + 2a5 − a6), γE1M2 =

−1

8πm
(a2 + a4 + a6). (2.41)

Furthermore, the two linear combinations, γ0 and γπ, defined in Eqs. (2.9) and (2.10),
can be expressed in terms of these subtraction constants:

γ0 =
1

2πm
a4, γπ =

−1

2πm
(a2 + a5). (2.42)

In a similar way, both the sum and the difference of the two scalar polarizabilities
αE1 and βM1 can be expressed as:

αE1 + βM1 =
−1

2π
(a3 + a6), (2.43)

and
αE1 − βM1 =

−1

2π
(a1). (2.44)

2.1.4 Effective chiral perturbation theory

A different approach to describe Compton scattering is by using an Effective Field
Theory (EFT). The basic idea here is to effectively characterize a certain process
by using a non-elementary description instead of attempting to use an underlying
fundamental theory. Since the details of nucleon internal structure are not probed
by low-energy electromagnetic radiation, a low-energy EFT which includes pions,
photons and nucleons as a whole, could be a useful tool to extract information
about the nucleon polarizabilities. To develop an EFT, there should be a clear
separation between the scales of the energies involved in the relevant process and
the ones needed to excite the processes that are not treated [45]. When con-
structing an EFT Lagrangian, all terms compatible with the symmetries of the
underlying theory must be included, each weighted with unknown parameters,
the so-called Low-Energy Constants (LECs), which are not explained within the
theory under construction. These parameters can be related to some of the prop-
erties of the particles involved — such as mass, charge, decay constant, etc. — or
they can be calculated from the underlying fundamental theory or, in particular
in the last years, they could come from lattice simulations. This gives an infi-
nite succession of terms that are organized subsequently to the power of ptyp/Λ,
providing the contribution of each operator to the amplitude, where ptyp is the
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typical momentum of the process described and Λ, so-called breakdown scale, is
the mass of the lightest degree of freedom omitted by the theory. For example,
in the EFT used to describe Compton scattering in the energy region relevant for
this thesis, the amplitudes are expanded in powers of

P/Λχ ≡ (ptyp,mπ)/mp � 1, (2.45)

where the light EFT scale P is the pion mass and momenta and the breakdown
scale Λχ ' mp is defined with hadrons that are not included in the theory. This
particular EFT is known as Chiral Effective Field Theory (χEFT), or zero-quark-
mass limit EFT. There are currently two main approaches: the first one does
not include the ∆(1232) as an explicit degree of freedom while the second does,
but it is not anymore manifestly Lorenz invariant. The former is called BχPT
(see [17, 46, 47]), while the latter is known as Heavy Baryon Chiral Perturbation
Theory (HBχPT) (see [45, 48–52]).

2.2 Baldin sum rule

The sum of the static scalar electric (αE1) and magnetic (βM1) polarizabilities
defined in Eq. (2.43) can be constrained using the experimental total cross-
section for meson photoproduction (σtot(ω)) by the well-known Baldin-Lapidus
sum rule [53, 54]:

αE1 + βM1 =
1

2π2

∫ ∞

ω0

dω

ω2
σtot(ω) = − 1

2π
ANB

3+6(0, 0), (2.46)

where the lower limit of the integral ω0 is the threshold energy for meson photo-
production (γN → πN), namely the minimum energy required to produce a pion,
given by approximately ω0 ≈ 140 MeV. The last term in Eq. (2.46) follows from
Eqs. (2.38) and (2.43) using the notation ANB

3+6(0, 0) =
[
ANB

3 (0, 0) + ANB
6 (0, 0)

]
.

It is normally divided into two terms:

αE1 + βM1 =
−1

2π

[
Aint

3+6(0, 0) + Aas
3+6(0, 0)

]
, (2.47)

with

Aint
3+6(0, 0) =

2

π

∫ νmax

νthr

dν ′

ν ′
ImA3+6(ν

′, 0), (2.48)

Aas
3+6(0, 0) =

2

π

∫ ∞

νmax

dν ′

ν ′
ImA3+6(ν

′, 0), (2.49)
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where the asymptotic part contributes only ∼ 6%, fixing νmax = 1.5 GeV [38].
As a consequence of the ω2-weighting, and since single pion photoproduction

is the largest contribution to the total photoproduction cross-section, the physics
related to the ∆-resonance region dominates the integral in Eq. (2.46).

2.3 Polarized Compton scattering

Polarized nuclear Compton scattering can be a powerful tool to study the in-
ternal structure of the proton, or the nucleon in general. There are different
possible combinations that give access to different single and double polarization
observables, depending on the polarized component of the reaction: it can be
the photon, in the initial or in the final state, or the proton, in the initial or in
the final state, or any of the possible combinations. The apparatus of the A2
Collaboration used for the experiment described in this thesis will be discussed
in Chapter 4, and allows for a polarized photon beam, linearly or circularly, and
a polarized proton target, longitudinally or transversely. For this reason, only
the cases of the singly and doubly polarized Compton scattering

~γ~p→ γp (2.50)

are considered here, without taking into consideration the recoil proton polariza-
tion. The most general case was extensively discussed by Babusci and colleagues
in the seminal paper given in Ref. [27].

2.3.1 Stokes parameters

The photon polarization can be conveniently described using the Stokes parame-
ters ξi with i = 1, 2, 3. They are constrained by the fact that the total degree of
the photon polarization cannot be greater than 1 [27]:√

ξ21 + ξ22 + ξ23 ≤ 1, (2.51)

and when using them, the photon polarization matrix density can be defined as:

〈εαε∗β〉 =
1

2
(1 + ~σ • ~ξ)αβ =

1

2

(
1 + ξ3 ξ1 − iξ2

ξ1 + iξ2 1− ξ3

)
αβ

. (2.52)

The photon polarization vector εν is defined in the radiation gauge ~ε • k̂ = 0,
and α, β = 1, 2 indicates one of the two orthogonal directions xγ, yγ with respect
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to the photon momentum direction zγ = k̂. The ξi parameters transform under
parity, time inversion and crossing as:

ξ1
P−→ −ξ1, ξ2

P−→ −ξ2, ξ3
P−→ ξ3 (2.53)

ξ1
T−→ −ξ1, ξ2

T−→ ξ2, ξ3
T−→ ξ3 (2.54)

ξ1
C−→ ξ′1, ξ2

C−→ −ξ′2, ξ3
C−→ ξ′3. (2.55)

Even though this definition of the Stokes parameters is frame dependent, the
quantities ξl defined as:

ξl =
√
ξ21 + ξ23 (2.56)

and ξ2 are Lorentz invariant. In this context, ξ2 gives the degree of circular
polarization of a photon, and it can be either 1 or −1, corresponding to right and
left helicity, respectively. ξl instead indicates the degree of linear polarization.
The angle φ between the electric field and the xγzγ-plane of scattering is defined
as:

cos(2φ) =
ξ3
ξl
, sin(2φ) =

ξ1
ξl
. (2.57)

2.3.2 Scattering amplitudes

The differential cross-section for Compton scattering has been introduced in
Eq. (2.32) as a function of the T -matrix. In the same Section 2.1.3, the T -
matrix has been expressed in Eq. (2.29) as function of six independent ampli-
tudes Ai(ν, t). This same matrix can also be expressed using a set of invariant
functions Wij, that are particularly convenient in the case of polarized Compton
scattering. In fact, they directly intervene in the definition of the independent
polarized observables which can be measured experimentally. Referring to the
specific case with an incoming polarized photon beam and polarized target, the
T -matrix can be written as:

|Tfi(~γ~p→ γp)|2 = W00 +W03ξ3

+N • S(W30 +W+
33ξ3)

+K • S(W+
11ξ1 +W+

12ξ2)

+Q • S(W+
21ξ1 +W+

22ξ2),

(2.58)

where N , K and Q are orthogonal four-vectors defined as:

Nν = εναβγP
′αQβKγ with P ′

ν = Pν −Kν
P • K

K2
,
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P =
(q + q′)

2
, K =

(k + k′)

2
, Q =

(q − q′)

2
=

(k′ − k)

2
, (2.59)

where the asymmetric tensor fulfills the condition ε0123 = 1. Furthermore, the
four-vector S in Eq. (2.58) represents the nucleon polarization, which is orthog-
onal to the proton four-momentum q.

It is very interesting to note that for the case of unpolarized target and un-
polarized beam only the first term in Eq. (2.58) survives, and from Eq. (2.32) a
simple equation for the unpolarized cross-section is obtained:

dσ

dΩunpol
=

1

64π2m2

(ω′

ω

)2
W00, (2.60)

where W00 can be written as function of the six independent amplitudes Ai(ν, t)

as:
W00 =

1

4
(4m2 − t)(t2|A1|2 + η2|A3|2)−

1

4
(t3|A2|2 + η3|A4|2)

− ν2t(t+ 8ν2)|A5|2 +
1

2
η(t2 + 2m2η)|A6|2

+Re
{
2ν2t2(A1 + A2)A

∗
5 +

1

2
η2(4m2A3 + tA4)A

∗
6

}
,

(2.61)

where t and ν where already defined in Eqs. (2.24) and (2.26), respectively, while
η is given as:

η =
(m4 − su)

m2
= 4ν2 + t− t2

4m2
. (2.62)

In the case of interest for this thesis, namely linearly polarized photon beam with
an unpolarized target, only the first entire line in Eq. (2.58) survives, where ξ3 is
the third Stokes parameter and W03 can be written as:

W03 =
ηt

2
Re{[(4m2 − t)A1 + 4ν2A5]A

∗
3 + 4m2A1A

∗
6}. (2.63)

For the sake of completeness, the remaining Wij terms in Eq. (2.58) are explicitly
reported here:

W±
11 = Im

{ t

2m
[(4m2 − t)A1 + 4ν2A5](ηA

∗
4 + tA∗

6)

± 2νt(tA2 − 4ν2A5)A
∗
6

}
,

(2.64)

W±
12 = Re

{
− η

2m
[(4m2 − t)A3 + 4m2A6](ηA

∗
4 + tA∗

6)

± 2νt(tA2 − 4ν2A5)A
∗
5

}
,

(2.65)
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W±
21 = 2 Im

{
−m(tA2 − 4ν2A5)[ηA

∗
3 + (t+ 4ν2)A∗

6]

± ν[tA1 − (t+ 4ν2)A5](ηA
∗
4 + tA∗

6)
}
,

(2.66)

W±
22 = 2Re

{
−mt(tA2 − 4ν2A5)A

∗
1

∓ νηA3(ηA
∗
4 + tA∗

6)
}
,

(2.67)

W±
30 = −8ν Im(tA1A

∗
5 + ηA3A

∗
6), (2.68)

W±
33 = Im

{
−8ν{[tA1 − (t+ 4ν2)A5]A

∗
6 + ηA3A

∗
5}

± 2

m
(tA2 − 4ν2A5)(ηA

∗
4 + tA∗

6]
}
.

(2.69)

It is worth noting here that below the pion photoproduction threshold, the six
amplitudes Ai are real. In this energy range only the invariant functions W00,
W03, W±

12, W±
22 survive.

2.3.3 Asymmetries

In polarized Compton scattering, using different polarization for the beam and/or
for the target, a set of experimentally accessible observables called asymmetries
can be defined. They quantify the effects of the different polarizabilities to the
Compton scattering cross-section. They can be single- or double-polarization ob-
servables, depending on the number of polarization degrees of freedom involved in
the scattering. They can be defined using a very convenient notation introduced
by Babusci et. al [27]: Σi and Σj for the single polarization asymmetries and Σij

for the double polarized ones. For the polarized photons, the index i = (1, 2, 3)

refers to the Stokes parameters εi. While, for the polarized protons, j = (x, y, z)

refers to the proton’s polarization axis. For the double polarization asymmetries,
the i and the j indices similarly refer to the polarization of the photons and pro-
tons, respectively. This notation can be extended to the photon and the proton
in the final state, in which case the primed indices i′ and j′ are used.

Limiting to the case of Eq. (2.50), seven different linear independent asym-
metries can be defined: two single and five double polarization asymmetries. In
the definition of these asymmetries dσ indicates the differential cross-section dσ

dΩ
,

where the superscripts indicate the photon polarization — ‖ and ⊥ for the po-
larization parallel (ξ3 = 1) and perpendicular (ξ3 = −1) to the scattering plane,
respectively — subscripts refer to the nucleon polarization. The asymmetries are:

• one beam asymmetry for a linearly polarized photon beam with an unpo-
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larized target:

Σ3 =
dσ‖ − dσ⊥

dσ‖ + dσ⊥ =
W03

W00

. (2.70)

• one target asymmetry for proton polarized along the ±y direction and un-
polarized photon beam:

Σy =
dσy − dσ−y

dσy + dσ−y

= CN
y

W30

W00

, (2.71)

with CN
y = m

2
ωω′ sin θγ′ .

• two double polarization asymmetries for circularly polarized photon beam
with right (R) and left (L) helicity with a target polarized along the ±x
and ±z axis, respectively:

Σ2x =
dσR

x − dσL
x

dσR
x + dσL

x

=
CK

x W
+
12 + CQ

x W
+
22

W00

, (2.72)

with CK
x = CQ

x = −1
2
ω′ sin θγ′ and

Σ2z =
dσR

z − dσL
z

dσR
z + dσL

z

=
CK

z W
+
12 + CQ

z W
+
22

W00

, (2.73)

with CK
z = −1

2
(ω + ω′ cos θγ′) and CQ

z = 1
2
(ω − ω′ cos θγ′).

• three double asymmetries for a linearly polarized photon beam and a po-
larized target:

Σ1x =
dσ

π/4
x − dσ

−π/4
x

dσ
π/4
x + dσ

−π/4
x

=
CK

x W
+
11 + CQ

x W
+
21

W00

, (2.74)

Σ1z =
dσ

π/4
z − dσ

−π/4
z

dσ
π/4
z + dσ

−π/4
z

=
CK

z W
+
11 + CQ

z W
+
21

W00

, (2.75)

Σ3y =
(dσ

‖
y − dσ⊥

y )− (dσ
‖
−y − dσ⊥

−y)

(dσ
‖
y + dσ⊥

y ) + (dσ
‖
−y + dσ⊥

−y)
= CN

y

W+
33

W00

, (2.76)

with CN
y = m

2
ωω′ sin θγ′ .

By time-reversal invariance, the eight recoil asymmetries are related, but not
identical, to those defined above. As noted at the end of the previous subsection,
only some of the invariant functions Wij are different from zero below the pion
photoproduction threshold, since at these energies the amplitudes Ai are purely
real. This leaves us with the fact that only three of the seven asymmetries defined
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are non-zero below this threshold: Σ3, Σ2x and Σ2z.

2.3.4 Polarized cross-section

Introducing the polarization three-vector ~ζ of the nucleon, it can be related to
the polarization four-vector S through the boost transformation [27]

~S = ~ζ +
S0

q0 +m
~q, S0 =

~q • ~S

q0
=
~q • ~ζ

m
. (2.77)

Using the definition of the Stokes parameters given in Section 2.3.1 and ~ζ, the
polarized cross-section can be parameterized as:

dσ

dΩ

∣∣∣
pol

=
dσ

dΩ

∣∣∣
unpol

{
1 + ξ3Σ3 + ζyΣy + ξ1(ζxΣ1x + ζzΣ1z)

+ ξ2(ζxΣ2x + ζzΣ2z) + ξ3ζyΣ3y

}
.

(2.78)

In the case of unpolarized target, ~ζ = 0, as in the experiment subject of this
thesis, only the first two terms of Eq. (2.78) survives:

dσ

dΩ

∣∣∣
pol

=
dσ

dΩ

∣∣∣
unpol

{
1 + ξ3Σ3

}
, (2.79)

and using the first relation in Eq. (2.57), the polarized contribution can be written
as function of the degree of photon linear polarization ξl as:

dσ

dΩ

∣∣∣
pol

=
dσ

dΩ

∣∣∣
unpol

{
1 + ξlΣ3 cos(2φ)

}
. (2.80)

As it will be explain later in this thesis, using this equation with Σ3 as free
parameter to fit the φ-distribution of the experimental polarized cross-section,
allows for the extraction of the beam asymmetry from the data.

2.4 Sensitivity studies

A simple but effective way to explore the sensitivity of the proton static polariz-
abilities on nuclear Compton scattering is to produce different sets of theoretical
predictions using different polarizability values. To produce these curves, a fixed-t
dispersion relation code from B. Pasquini was used [10, 39, 40]. The predictions
were produced for two different observables, the unpolarized differential cross-
section dσ/dΩ and the beam asymmetry Σ3, mainly because they are the two
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quantities measured in this thesis, but also because these are the most sensi-
tive observables below the pion photoproduction threshold. This was done at
six different beam energies for the unpolarized cross-section — 85− 135 MeV in
10-MeV steps — and three different beam energies for the beam asymmetry Σ3

— 90 MeV, 110 MeV, and 130 MeV. For all the theoretical predictions, the val-
ues of the spin polarizabilities were fixed at the most recent experimental values
available, published in 2019 by the A2 Collaboration [19]:

γE1E1 = −2.87× 10−4 fm4, γM1M1 = 2.70× 10−4 fm4

γE1M2 = −0.85× 10−4 fm4, γM1E2 = 2.04× 10−4 fm4

and these values are considered without errors. In this way, it is possible to isolate
the changes in the predictions due to the use of different scalar polarizabilities
values, without the possible influence of other parameters. Nevertheless, a precise
knowledge of the spin polarizabilities is of crucial importance in the extraction of
αE1 and βM1.

Four different parameters were considered in this study: αE1, βM1, αE1+βM1,
and αE1 − βM1, and four different sets of calculation were done. In each of them
a single parameter was varied by ±1 and ±2 × 10−4 fm3 from the value quoted
by the PDG [55]:

a) varying αE1, and fixing βM1 = 2.5 × 10−4 fm3 [55]. No constraints were
given for αE1 + βM1, and αE1 − βM1. The effect of αE1 on the unpolarized
cross-section and on the beam asymmetry can be seen in Fig. 2.4.

b) varying βM1, and fixing αE1 = 11.2 × 10−4 fm3 [55]. No constraints were
given for αE1 + βM1, and αE1 − βM1. The effect of βM1 on the unpolarized
cross-section and on the beam asymmetry can be seen in Fig. 2.5.

c) varying αE1+βM1, and fixing αE1−βM1 = 8.7×10−4 fm3 [55]. No constraints
were given for αE1 and βM1. The effect of αE1 + βM1 on the unpolarized
cross-section and on the beam asymmetry can be seen in Fig. 2.6.

d) varying αE1 − βM1, and fixing αE1 + βM1 = 13.7 × 10−4 fm3 [55]. No
constraints were given for αE1 and βM1. The effect of αE1−βM1 on the un-
polarized cross-section and on the beam asymmetry can be seen in Fig. 2.7.

In all the figures, the solid line indicates the prediction obtained using the PDG
quoted values for all the four parameters. To help visualize the variation in the
predictions due to the different values of the scalar polarizabilities used, a relative
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variation is also plotted as a black curve in the gray canvas. This relative variation
is calculated as the difference between the predictions obtained using the bigger
and the smaller value of the parameter, divided by the prediction obtained using
the central value of the parameter. In other words, it is the difference between
the magenta and the red curves, divided by the blue one.

From these simple studies, it can be noted that the unpolarized cross-section
has generally higher sensitivity to the two scalar polarizabilities compared to the
beam asymmetry Σ3. The unpolarized cross-section at θγ′ = 90◦ seems to be
independent of βM1 and at this angle the dependency of the former to the latter
changes behavior. Furthermore, it is interesting to note how the sensitivity to
αE1+βM1 is only in the forward region, while, conversely, the sensitivity to αE1−
βM1 becomes significant only in the backward region. This behavior can be easily
understood by looking at the polarization contribution to the differential cross-
section calculated by Petrun’kin, introduced in Section 2.3.4 (see Eq. (2.20)). The
beam asymmetry Σ3 instead shows a higher overall sensitivity to the magnetic
scalar polarizability βM1, in particular for the higher incoming photon energy
(ωγ = 130 MeV) and in the forward scattering angle region. The sensitivity to
the electric scalar polarizability αE1 is lower and more concentrated in the central
scattering angle region, around θγ′ = 90◦.

These studies are purely qualitative and they can be useful to get a gen-
eral understanding of how a variation of the scalar polarizabilities influences
the experimental observables measured in this dissertation. Deeper and more
general quantitative studies were published in the recent years; for example see
Refs. [13, 56], and all of them seems to indicate that a precise measurement of
the unpolarized Compton scattering cross-section below the pion photoproduc-
tion threshold in a wide range of angles is the best way to precisely extract the
proton scalar polarizabilities.
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Figure 2.4: Theoretical calculations for the unpolarized Compton scattering cross-
section (above) and for the beam asymmetry Σ3 (below), obtained with different
values of αE1 and with βM1 = 2.5×10−4 fm3. The black curve in the gray canvas
indicates the relative variation in the experimental observable, calculated as the
difference between the predictions obtained using the biggest and the smallest
values of αE1 divided by the one obtained using the central value. The y-axis on
the right gives the scale of the variation.
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Figure 2.5: Theoretical calculations for the unpolarized Compton scattering cross-
section (above) and for the beam asymmetry Σ3 (below), obtained with different
values of βM1 and with αE1 = 11.2×10−4 fm3. The black curve in the gray canvas
indicates the relative variation in the experimental observable, calculated as the
difference between the predictions obtained using the biggest and the smallest
values of βM1 divided by the one obtained using the central value. The y-axis on
the right gives the scale of the variation.
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Figure 2.6: Theoretical calculations for the unpolarized Compton scattering cross-
section (above) and for the beam asymmetry Σ3 (below), obtained with different
values of αE1 + βM1 and with αE1 − βM1 = 8.7 × 10−4 fm3. The black curve in
the gray canvas indicates the relative variation in the experimental observable,
calculated as the difference between the predictions obtained using the biggest
and the smallest values of αE1+βM1 divided by the one obtained using the central
value. The y-axis on the right gives the scale of the variation
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Figure 2.7: Theoretical calculations for the unpolarized Compton scattering cross-
section (above) and for the beam asymmetry Σ3 (below), obtained with different
values of αE1 − βM1 and with αE1 + βM1 = 13.7× 10−4 fm3. The black curve in
the gray canvas indicates the relative variation in the experimental observable,
calculated as the difference between the predictions obtained using the biggest
and the smallest values of αE1−βM1 divided by the one obtained using the central
value. The y-axis on the right gives the scale of the variation



Chapter 3

Experimental and theoretical
studies

Starting from the middle of the last century, there have been both a theoretical
and an experimental effort to study the nucleon structure and in particular to
access the nucleon polarizabilities. The first experiments date from the 1950s,
even if the precise measurements that contribute to a deeper understanding of
these quantities did not arrive until the 1990s. The complementary theoretical
interest led to the development of different models (see Sections 2.1.3 and 2.1.4) as
well as different strategies for fitting the data to extract the polarizability values
that better describe the data. Among them, one of the most promising is a Monte
Carlo-based fitting method developed by Pedroni, Sconfietti and Pasquini that
uses fixed-t subtracted DRs [11, 57].

3.1 Low-energy Compton scattering experiments

The first nuclear Compton scattering experiments on the proton were reported in
the 1950s and 60s by Pugh et al. [58], Oxley [59], Hyman et al. [60], Bernardini et
al. [61], and Goldansky et al. [62]. All of these were low-energy experiments
(ωγ . 100 MeV) mostly aimed of testing the dispersion theories that were devel-
oping at that time. The technical difficulties in performing photon experiments
caused these measurements to have considerable statistical and systematic errors
and nowadays they are normally not considered in any global fits to extract the
polarizabilities. Nevertheless, these experiments managed to obtain results that
are in reasonable agreement with the current values. Notable examples are the
work from Goldansky et al. that led to an extraction of the scalar polarizabilities
αE1 = (9 ± 2) × 10−4 fm3 and βM1 = (2 ∓ 2) × 10−4 fm3, and the paper by

33
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Oxley that quotes an unpolarized cross-section between 10.6 and 14.7 nb/sr in
the scattering angle region θγ′ = 70◦−150◦, despite the extremely poor incoming
photon energy resolution ωγ = 60± 27.5 MeV.

To have the first precise Compton scattering experiment, twenty years after
these first measurements, two major upgrades in the experimental physics tech-
niques had to happen. First of all, was the introduction of the photon tagging
technique, which was used to collect the data presented in this thesis. This has
been, and still is, a key factor for photo-nuclear experiments, since it allows for
a precise determination of the incoming photon energy, as well as for a precise
measurement of the photon beam luminosity, essential to accurately extract the
cross-section. The other improvement that opened up new possibilities for Comp-
ton scattering experiments was the availability of high-volume calorimeters with
a high resolution. These two improvements paved the way for a new era of preci-
sion Compton scattering experiments and, as it will be shown in the next chapter,
they are still two important factors in the work of this dissertation.

Limiting the scope to the low-energy data, namely mostly below the pion pho-
toproduction threshold, the main experiments of this new era are: Federspiel et
al. [63], Zieger et al. [64], Hallin et al. [65], MacGibbon et al. [66], and Olmos
de Léon et al. [67]. These experiments were all concentrated in 10 years, from
1991 to 2001, and besides Hallin and Zieger they are all very similar. In the
next sections, a brief description of all of them will be given, and more words
will be spent on the work by Olmos de Léon and colleagues, since it is the most
comprehensive and recent one.

3.1.1 Federspiel experiment

The first of these tagged-photon Compton scattering experiments was performed
at The Nuclear Physics Laboratory of the University of Illinois, Champaign, USA,
by Federspiel and colleagues [63]. The incoming tagged photons were divided into
8 bins, 4 MeV each, from ωγ = 32 to 72 MeV. After being collimated, the photon
beam impinged on a liquid hydrogen target, and the particles in the final state
were detected by two large NaI detectors placed at scattering angles θγ′ = 60◦

and θγ′ = 135◦, respectively. They obtained 16 points of unpolarized differential
cross-section, with a statistical error of about ±10% and a total systematic error
of about ±2.2%. They performed a fit to the data using L’vov DR model [68],
assuming the Baldin sum rule constraint αE1 + βM1 = (14.2 ± 0.5) × 10−4 fm3.
The final results quoted a value for αE1 = (10.9± 2.2± 1.3)× 10−4 fm3 and for
βM1 = (3.3 ∓ 2.2 ∓ 1.3) × 10−4 fm3, where the first error is statistical and the
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second is systematic. The opposite sign indicates that the errors on αE1 and βM1

are completely anticorrelated. This is always true whenever the Baldin sum rule
constraint is imposed in the fit.

3.1.2 MacGibbon experiment

The MacGibbon experiment [66] was performed at the Saskatchewan Accelerator
Laboratory (SAL) in Saskatoon, Canada, as a follow-up of the one published by
Federspiel, 4 years earlier. They used the same two large NaI detectors, placed
at scattering angles θγ′ = 90◦ and θγ′ = 135◦, and they simultaneously measured
a large incoming photon energy range from ωγ = 70 to 148 MeV, extracting 9
points of unpolarized differential cross-section, per scattering angle. Of these 9
bins in ωγ, the first 4 were tagged (ωγ = 72.2 to 96.8 MeV), while the other 5
were untagged. The normalization of the untagged bins was done based on the
well-known normalization of the data in the tagged region, extrapolated to the
higher energy region using the bremsstrahlung distribution shape. The statistical
errors in the unpolarized differential cross-section were in the range from ±10%

to ±20%, and the total systematic errors about ±2.9% for the untagged and from
3 to 4% for the tagged bins. The fit to the data was done using the L’vov DR
model [68], both with and without the Baldin sum rule constraint as an additional
point at αE1+βM1 = (14.2±0.5)×10−4 fm3. The final results for the two proton
scalar polarizabilities, independent of the inclusion of the Baldin sum rule, are
αE1 = (12.5±0.6±0.7±0.5)×10−4 fm3 and βM1 = (1.7∓0.6∓0.7∓0.5)×10−4 fm3,
where the first error is statistical, the second systematic and the last one is due
to the model.

3.1.3 Hallin experiment

Among the five experiments considered here, the Hallin experiment covered the
highest incoming photon energy range (ωγ = 136−289 MeV) [65], and it was per-
formed at the SAL (Saskatoon, Canada) using the large NaI calorimeter BUNI,
developed at Boston University. This particular detector covers only a small frac-
tion of the solid angle, and so the measurements at different scattering angles were
done sequentially, one after the other. Moreover, four different bremsstrahlung
end point energies were used (170, 200, 244 and 298 MeV) for each measurement
at different scattering angles, and only the incoming photons with an energy
close to the end point of the bremsstrahlung distribution were used. Every mea-
surement required about one day to collect enough statistics and a dedicated
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detector calibration for every different end point energy value. This huge work
produced a consistent number of points for both differential unpolarized cross-
section and excitation function. The statistical errors are lower in the differential
cross-section compared to the ones in the excitation function, since the bins in
energy are wider in the former compared to the latter, and they range from
about ±3.5%− 5% in the backward to ±10%− 18% in the forward region. The
systematic errors, instead, are composed of two parts, one correlated and one
point-to-point uncorrelated, and in total they are about ±3.7% − 4.2%. The
fit to the data using L’vov DR model [68], and assuming the Baldin sum rule
constraint αE1 + βM1 = (14.2 ± 0.5) × 10−4 fm3, gave the lowest χ2 value for
αE1 = (9.8± 0.4± 1.1)× 10−4 fm3 and βM1 = (4.4∓ 0.4∓ 1.1)× 10−4 fm3, where
the two errors are respectively statistical and systematic.

3.1.4 Zieger experiment

This experiment led to the first, and up to now only, measurement of the unpo-
larized Compton scattering cross-section at scattering angle θγ′ = 180◦ [64]. This
is a very interesting measurement since the cross-section at this scattering angle
is only sensitive to the difference αE1 − βM1, as seen in Chapter 2. To perform
this innovative measurement, the forward proton (recoiling at θp′ = 0◦) was de-
tected in a spectrometer. The cross-section was determined by comparing the
Compton proton and Compton electron yields, allowing for absolute normaliza-
tion without a precise knowledge of the shape and the intensity of the incoming
photon beam. Two different points at ωγ = 98 and 132 MeV were measured, both
16 MeV wide. The statistical errors for the two points are ±18.4% and ±5.4%,
respectively, while the systematic errors are ±6.4% and 4.3%. A fit to the data
was done using the L’vov DR model [68], with the difference of the electric and
the magnetic scalar polarizabilities as the only free parameter. The best fit was
obtained for αE1 − βM1 =

(
7.03+2.49+2.14

−2.37−2.05

)
× 10−4 fm3, where the two errors are

statistical and systematic, respectively. Assuming αE1 + βM1 = 14.2× 10−4 fm3,
individual values for the two proton scalar polarizabilities were determined to be
αE1 =

(
10.62+1.25+1.07

−1.19−1.03

)
× 10−4 fm3 and βM1 =

(
3.58−1.19−1.03

+1.25+1.07

)
× 10−4 fm3.

3.1.5 Olmos de Léon experiment

The highest statistics experiment published up to now was performed by the
TAPS Collaboration at the MAMI facility, in Mainz (Germany) [67]. The un-
polarized Compton scattering cross-section was measured in both a wide energy
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Figure 3.1: TAPS apparatus used for
the Olmos de Léon et al. measure-
ment. The photon beam enters from
the top-right corner, between blacks
F and A. The figure is reproduced
from Ref. [67].

Figure 3.2: Differential Comp-
ton scattering cross-section in
the lab system for different val-
ues of the scattering angle θγ′ .
Solid circles (•) are the results
from Olmos de Léon et al., open
circles (©) are results from Fed-
erspiel et al., open squares (�)
are MacGibbon et al., and open
triangles (4) are taken from
here [69]. The figure is repro-
duced from Ref. [67].
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(ωγ = 55 − 165 MeV) and scattering angle (θγ′ = 59 − 155◦) range. It was done
by using the large Two-Arm Photon Spectrometer (TAPS) array, a modular de-
tector arranged in six different blocks of BaF2 crystals. The TAPS apparatus
is still used in a different configuration to cover the forward region in the setup
used for this thesis. The apparatus used in the measurement is represented in
Fig. 3.1 (taken from the original paper, Ref. [67]). They collected almost 200
hours of unpolarized data, for a total selected sample of ∼ 2 × 105 Compton
events. The final results consist of a significant number of data-points: 5 scat-
tering angles per 13 different incoming photon energies, with a statistical error
from ±5%, for the lower energy bins, up to ±10%, for the highest energy bins,
and a correlated total systematic error of about 3%. In addition, a point-to-
point systematic error of about 5% has to be added, due to uncertainties in the
apparatus geometry and in the simulation. The published results are reported
in Fig. 3.2 (taken from Ref. [67]), together with some of the results from the
experiments described in the previous sections. A fit including only the data
from this experiment was done within the DRs framework [38] using the π pho-
toproduction multipoles of Arndt et al. [42], solution SAID-SM99K. The best-fit
values for the two polarizabilities are αE1 = (11.9 ± 0.5 ∓ 1.3) × 10−4 fm3 and
βM1 = (1.2±0.7±0.3)×10−4 fm3, without the Baldin sum rule constraint, where
the errors are statistical and systematic, respectively.

3.1.6 Sokhoyan experiment

This work can be thought as a pilot experiment used as a proof of concept to
show the feasibility of the precise measurements described in this dissertation. It
consists of about 200 hours of linearly polarized data collected in June 2013 using
the experimental setup of the A2 Collaboration. The analysis performed on this
data is very similar to the one described in next chapters. This work resulted in
the first extraction of the beam asymmetry Σ3 below the pion photoproduction
threshold. The results were published in 2017 [20] together with an extraction of
the magnetic polarizability βM1. The fit to the asymmetry data was performed
by fixing the value of αE1 + βM1 = 14.0 × 10−4 fm3, and using both BχPT and
HBχPT frameworks, resulting respectively in βM1 =

(
2.8+2.3

−2.1

)
× 10−4 fm3 and

βM1 =
(
3.7+2.5

−2.3

)
× 10−4 fm3 [20]. The results, reported in Fig. 3.3 for BχPT, are

in good agreement with the other measurements described in the previous sec-
tions, despite the errors are not really competitive. Nevertheless, this experiment
showed that Σ3 provides a new and different input for the determination of the
scalar polarizabilities, and the experience gained in that work was crucial for the
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Figure 3.3: Beam asymmetry Σ3 for three photon beam energy ranges: ωγ =
79 − 98 MeV (left), ωγ = 98 − 119 MeV (middle), ωγ = 119 − 139 MeV (right).
The error bars represent the statistical errors, the gray bars the systematic errors.
The fit results within BχPT are shown as a blue curve. Shaded blue bands are
determined by the fit errors on βM1. These results were published as a proof of
principle for the experiment discussed in this dissertation [20].

success of the high precision experiment described in this thesis.

3.2 Baldin sum rule evaluation

A first experimental evaluation of the Baldin sum rule from photo-absorption
data was published by Damashek and Gilman, using results published by SLAC
and Deutsches Elektronen-SYnchrotron (DESY) in the 1960s. They determined
the sum of the two scalar polarizabilities to be:

αE1 + βM1 = (14.2± 0.3)× 10−4 fm3. (3.1)

With the publication of new data, more recent evaluations of this sum rule have
been published. In particular, precise data were published by MacCormick et
al. [70] from an experiment performed at the MAMI facility, using the electron
beam in conjunction with the DAPHNE detector [71]. These high-accuracy data
points cover a wide incoming photon energy range ωγ = 200− 800 MeV and they
were used, together with a complementary dataset from the Daresbury Nuclear
Physics Lab [72], for a re-evaluation of the Baldin sum rule published by Babusci
and colleagues [73]. In this analysis, the total photo-absorption cross-section has
been calculated using the SAID analysis [42] (solution SP97K) and the data were
fitted to get the best function that describes them. The authors obtained a new
value for the Baldin sum rule:

αE1 + βM1 = (13.69± 0.14)× 10−4 fm3. (3.2)
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Another re-evaluation was published a few years later by the TAPS collabora-
tion [67]. They determined the total photo-absorption cross-section using the
partial wave analysis method. Close to the pion photoproduction threshold they
used multipole solutions of Arndt et al. [42], while for the energy above they used
SAID partial wave analysis (solution SM99K). They determined a value for the
Baldin sum rule of:

αE1 + βM1 = (13.8± 0.4)× 10−4 fm3. (3.3)

3.3 Scalar polarizabilities extraction

The experiments described above represent the vast majority of the current world
database on Compton scattering on the proton. It is interesting to note that all
these experiments, with the exception of Sokhoyan et al. [20], measured the un-
polarized cross-section only, and the first results on the beam asymmetry Σ3 at
low beam energy were published only four years ago. In the previous sections,
the values of the two scalar polarizabilities extracted using only the single dataset
from each experiment were given, together with a short description of the exper-
iments and the relative size of the errors. A first global extraction was published
together with the results from the TAPS Collaboration, obtained by fitting all the
available points at low energy (four out of the six experiments described above,
with the exception of Hallin et al. and Sokhoyan et al.) using a DR code from
L’vov [38]. The quoted values are [67]

αE1 = (12.1± 0.3∓ 0.4)× 10−4 fm3,

βM1 = (1.6± 0.4± 0.4)× 10−4 fm3, (3.4)

fixing the value of αE1 + βM1 = (13.8± 0.4)× 10−4 fm3; and

αE1 = (11.9± 0.5∓ 0.5)× 10−4 fm3,

βM1 = (1.5± 0.6± 0.2)× 10−4 fm3, (3.5)

without the Baldin sum rule constraint.
From the experimental extractions of these two parameters, it turns out that

βM1 is about one order of magnitude smaller than αE1. This can be explained
by the presence of two different and competitive processes that contribute to the
magnetic scalar polarizabilities. The quark core shows a paramagnetic contribu-
tion, while the virtual pion cloud exhibits both diamagnetic and paramagnetic
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contributions. Since the paramagnetic contribution is stronger, as usual, the over-
all effect is an alignment of the generated dipole moment with the magnetic field
( ~H), and so a positive value of the magnetic scalar polarizability βM1.

After this first extraction, other estimates for the two proton scalar polariz-
abilities have been published, both predicted from the theory and extracted from
the data. In the next sections a small review of these analyses is given, together
with the quoted values. Lastly, in Section 3.3.5, a summary of the current world
situation is reported, together with a critical discussion on it.

3.3.1 χPT predictions for the proton scalar polarizabilities

A study of low-energy Compton scattering on the proton within the framework
of BχPT was published in 2010 by Lensky and Pascalutsa [47]. It includes all
the effects up to the next-to-next-to-leading order, namely the effects of orders
p2, p3 and p4/∆ (with ∆ ≈ 300 MeV being the ∆-resonance excitation energy).
In the calculation, there are no unknown LECs up to this order, and the first
enters one order higher (p4). As explained in Section 2.1.4, the big advantage of
effective field theories is the possibility to estimate the theoretical uncertainties
using truncated calculations, and in this case the authors showed that these
uncertainties are of the same size as the experimental uncertainties of the existing
low-energy Compton scattering data. The differential unpolarized cross-section
predicted by this calculation showed a good agreement with the existing data, as
can be seen in Fig. 7 of Ref. [47]. Despite this, the values predicted for the two
proton scalar polarizabilities turned out to be in significant disagreement with
the one extracted from the global fit of the data, showed in Eq. (3.5). In fact,
the values of the scalar polarizabilities predicted by the BχPT are:

αE1 = (10.8± 0.7)× 10−4 fm3,

βM1 = (4.0± 0.7)× 10−4 fm3. (3.6)

This significant discrepancy reflects the unfortunately modest sensitivity of the
unpolarized Compton scattering cross-section to the scalar polarizabilities, mean-
ing that significant differences in the two parameters are not strongly visible in the
experimental observables. Conversely, small variations in the observables yield to
significant differences in the scalar polarizability values. This is a further indica-
tion of the importance of performing a precise experiment, covering an angular
region as wide as possible, and performing an exhaustive study of the systematic
uncertainties.
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3.3.2 HBχPT fit to extract the proton scalar polarizabil-
ities

An extensive fitting study of both the low- and high-energy existing data on
Compton scattering on the proton was performed using HBχPT by McGovern,
Phillips and Grießhammer [52]. In this work, the authors divided the energy
range in two different parts: a low-energy region (ωγ . mπ), where they used an
amplitude completed up to the N4LO (O(e2δ4)); and a high-energy region (ωγ

similar to the ∆-resonance excitation energy), where the Compton amplitude is
truncated at the NLO (O(e2δ0)).

An extensive explanation of the fit procedure can be found in the original pa-
per [52], together with the numerical values used for the non-free parameters. The
free parameters in the final fit were the two scalar polarizabilities αE1 and βM1,
the spin polarizability γM1M1 and the Lagrangian parameter b1, that describes the
γN∆ M1 transition strength. This last parameter has been determined by fitting
the high-energy part of the database, i.e. in the ∆-resonance region. The fits
to this high-energy part and to the low-energy database were iterated until they
converged. Furthermore, since the data in the forward region are scarce, and this
is the region where the sensitivity to the value of αE1+ βM1 is higher, the Baldin
sum rule constraint was used in the fit: αE1+βM1 = (13.8±0.4)×10−4 fm3. The
values of the two scalar polarizabilities that minimized the χ2 function turned
out to be:

αE1 = (10.65± 0.35± 0.2± 0.3)× 10−4 fm3,

βM1 = (3.15∓ 0.35± 0.2∓ 0.3)× 10−4 fm3, (3.7)

where the errors come from statistics, Baldin sum rule and theory model, respec-
tively. The best values obtained for the other two parameters are:

γM1M1 = (2.2± 0.5)× 10−4 fm4,

b1 = (3.61± 0.02),

where the quoted errors are statistical only.
A peculiarity of this study is the definition of a “selected” database to be used

for the fit. In a previous paper from the same group [45], all the existing datasets
have been compared in the phase-space regions where they overlap, searching for
possible disagreements and outliers. According to the authors, this study showed
the presence of some outliers in the so-called modern low-energy data — the
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experiments described at the beginning of this chapter: two single points, namely
Federspiel [63] (ωγ = 45 MeV, θγ′ = 135◦), Olmos de Léon [67] (ωγ = 108 MeV,
θγ′ = 133◦), plus all the points from Hallin [65] with energy ωγ > 150 MeV.
Furthermore, two of the old low-energy experiments were completely excluded
from the fit, namely [59] and [61], as well as the points from Baranov [69] at θγ′ =

150◦. The definition of this “selected” database was performed by the authors
using a qualitative approach, by simply studying the agreement among different
datasets and predictions in the same phase-space region. This led to the exclusion
of single points, at given energies and angles, from entire datasets, without any
experimental reason (i.e. detector inefficiencies, higher level of background, etc.)
and without constructive discussions with the authors of the measurements. The
main arguments in favor of this “selected” database is a general improvement of
the final χ2 of the fit. In a recent work by Pasquini, Pedroni and Sconfietti [11],
the authors spent a big effort in systematically checking the consistency of the full
database, using different statistical strategies in order to achieve a quantitative
and objective result. They concluded that their consistency tests did not show
any strong statistical motivations for the exclusion of any data points from the
global database below the pion photoproduction threshold, even though they
observed significant deviations of a few points at the backward scattering angles.
Furthermore, they showed how the use of this “selected” database in the fit for the
extraction of the scalar polarizabilities can affect the central value of βM1, leading
to a 40−50% increase [11]. This effect seems to partially explain the disagreement
between the different extraction of the scalar polarizabilities reported in this
chapter. This is further discussed in Section 3.3.5.

3.3.3 BχPT fit to extract the proton scalar polarizabilities

A fit similar to what was described in the previous section was also performed
in the framework of covariant BχPT [74]. As explained in Section 3.3.1, this
theory is fully predictive to the NNLO and the values of αE1 and βM1 turned
out to be in disagreement with the ones extracted from the TAPS collaboration
dataset (see Eq. (3.5)), using DR based code, and in good agreement with the
results of the fit within the HBχPT framework. To further explore this apparent
discrepancy, the authors added to the covariant theory the terms with the bigger
contribution at the N4LO, including the counter terms δαE1 and δβM1 that have
to be fitted to the low-energy data. The same “selected” low-energy database of
Ref. [52] was used for this fit, up to a photon energy ωγ = 170 MeV. No data were
fitted at higher energies, just a check by eye of the agreement between the fit and
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the data was required. The fit was done both with and without the Baldin sum
rule constraint. The best values obtained for the two scalar polarizabilities in the
latter case are:

αE1 = (10.9± 0.45± 0.4)× 10−4 fm3,

βM1 = (3.6± 0.55± 0.4)× 10−4 fm3, (3.8)

where the errors are statistical and theoretical, respectively. Instead, the results
quoted by the authors for the Baldin sum rule (αE1+βM1 = (13.8±0.4)×10−4 fm3)
constrained fit are:

αE1 = (10.6± 0.25± 0.2± 0.4)× 10−4 fm3,

βM1 = (3.2∓ 0.25∓ 0.2± 0.4)× 10−4 fm3, (3.9)

where the errors come from statistics, Baldin sum rule and theory model, respec-
tively.

These results are in very good agreement with the ones obtained within the
HBχPT framework, and they are also consistent with the one predicted by the
model at the NLO. On the other hand, it is interesting to note how these values are
in substantial disagreement with those in Eq. (3.5), despite no new experimental
results were published in the meantime.

3.3.4 Bootstrap-based fit to extract the proton scalar po-
larizabilities

All the extractions of the scalar polarizabilities from the data discussed in the
previous sections are obtained using the standard fitting technique, the so-called
least squares method. It is based on the χ2 function:

χ2(ϕ) =
N∑
i=1

(Oi − Ti(ϕ)

σi

)2
, (3.10)

where Oi is the i-th of the N experimental observations, σi is its statistical un-
certainty in root mean square (rms) units and Ti(ϕ) is the prediction from the
theoretical model, depending on the values used for the set of unknown param-
eters ϕ. The optimal set of parameters ϕ̂ is the one that minimize the value
of χ2(ϕ̂) = χ2

min. Despite this being a standard technique when fitting a large
variety of scientific data, it presents some difficulties in the inclusion of the sys-
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tematic uncertainties associated with the experimental data, especially if they
do not follow a Gaussian distribution. In fact, in such cases, the resulting χ2

min

parameter does not follow the standard χ2 distribution, since it is no longer a
sum of squared, independent, standard Gaussian random variables [57]. This is
a situation that can commonly happen when fitting results from a wide range of
different experiments, and it is also the case of the low-energy Compton scatter-
ing database, where each experiment has many sources of systematic errors that
should be properly treated. As an example, the results from the TAPS collabora-
tion [67], which is the largest subset of the existing database, has both correlated
and point-to-point uncorrelated systematic errors.

A new Monte Carlo-based fitting method was very recently developed by Pe-
droni and Sconfietti [57]. It is based on the parametric bootstrap technique [75]
and it has also been used to fit the low-energy Compton scattering dataset to
extract the proton scalar polarizabilities [11]. Generally speaking, it basically
consists of randomly generating N Monte Carlo replicas of the experimental
database, and to fit each of these simulated databases. From each of these fits,
a set of best-values ϕ̂j can be extracted, where j is the j-th bootstrap iteration.
From this sample, all the properties of the unknown probability distribution of
the parameter set ϕ can be evaluated. This method is very general and was
applied to the Compton data fit under the following assumptions:

• every experimental point is Gaussian distributed around the measured value,
with standard deviation given by the statistical error;

• if not explicitly stated by the experimental group in the paper, every sys-
tematic error is uniformly distributed. If there are more sources, they are
considered as independent;

• the systematic errors affect the data as a constant scaling factor for the
whole dataset;

• all the nset datasets are independent.

Under these conditions, a generic bootstrapped point Pij can be written as:

Pij = (1 + δsj)(Ei + γijσi) ∀s = 1, . . . , nset, (3.11)

where the index i runs over the number of experimental points in each dataset
(ns), the index j runs over the Monte Carlo iterations (N) and the index s runs
over the number of independent dataset (nset). Ei is a given experimental point



46 3. Experimental and theoretical studies

with error σi. The Gaussian normal variable γij ∈ G[0, 1] is used to sample
the bootstrapped point inside the statistical error of the experimental one, and
δsj ∈ U [−∆s,∆s] is a box distributed variable, common for all the ns points
within a given dataset s, that accounts for the published systematic error ±∆s

and is extracted independently at every iteration for each dataset. In case of
multiple independent sources of systematic errors, δsj is the product of the δsjk
box distributed variables, where k = 1, ..., nsource.

The minimization function in Eq. (3.10) can then be modified as

χ2
boot,j(ϕ) =

ndata∑
i=1

(Pij − Ti(ϕ)

σij

)2
, (3.12)

where the σij has been modified to account for the scaling due to the systematic
error:

σij = (1 + δsj)σi, (3.13)

for the s-th dataset. The minimum of the function in Eq. (3.12), χ̂2
boot,j ≡

χ2
boot,j(ϕ̂), gives a set of parameters ϕ̂j for every bootstrap cycle. After N it-

erations, the observed distribution P(ϕ̂j) of the set of random parameters ϕ̂j

gives an estimate of the true probability distribution P(ϕ). Now, the best value
and the standard deviation of the set of unknown parameters ϕ can be determined
as:

ϕ̂ ≡ 1

N

N∑
j=1

ϕ̂j, and σϕ̂ ≡

√√√√ 1

N − 1

N∑
j=1

(ϕ̂j − ϕ̂)2. (3.14)

The quality of the fit can be estimated by using the minimum value χ̂2
boot,j of

the χ2 distribution defined in Eq. (3.10). A demonstration of the link between
Eq. (3.12) and Eq. (3.10), as well as a more detailed and comprehensive discussion
of this new fit procedure, is given in Ref. [57].

The fit procedure briefly discussed above has many advantages, such as the
possibility to easily include or exclude from the fit any kind of systematic errors,
the possibility to evaluate the expected theoretical probability distribution of the
set of unknown parameters even in the presence of systematic errors, and the
possibility to include uncertainties on additional model parameters (such as the
spin polarizabilities for the case of low-energy Compton scattering) that are not
directly fitted to the data. This technique was successfully applied for the first
time to extract the scalar proton polarizability from low-energy Compton data,
using fixed-t subtracted DRs for the model predictions [11]. The authors per-
formed the fit procedure under various conditions: with and without the Baldin
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sum rule constraint αE1 + βM1 = (13.8 ± 0.4) × 10−4 fm3, with γπ as free or
fixed parameter, with and without the systematic errors, and including just the
TAPS dataset [67] or using the full low-energy database (including both “old-”
and “new-”era experiments as explained in Section 3.1). To include the uncer-
tainties of the model parameters not treated as free in the fit, such as the spin
polarizabilities, the value of each of these parameters p was sampled at each iter-
ation from a Gaussian distribution defined as G[p, σ2

p]. Furthermore, only for the
TAPS dataset, a 5% point-to-point systematic error was added in quadrature to
the statistical error, in order to be able to use the procedure described above to
include the other sources of systematic errors.

The authors observed that the obtained values of the two proton scalar polar-
izabilities depend on the choice of the dataset and on the inclusion or not of the
Baldin sum rule constraint, but the variations are well inside the uncertainties.
Furthermore, as expected, the inclusion of the systematic errors does not change
the central values of the two fitted parameters, but increases their uncertainties.
Interestingly, this inclusion does not change the minimum χ̂2

boot of the χ2 dis-
tribution, but shifts its cumulative distribution function to the right, meaning
that higher values of χ̂2

boot,j are more likely to occur. Last of all, they found a
very good agreement between the value of γπ extracted from the fit and the one
existing in literature. In conclusion, including the entire database in the fit, with
the systematic errors, and using the Baldin sum rule constraint, they obtained
these values for the two proton scalar polarizabilities:

αE1 = 12.03+0.48
−0.53 × 10−4 fm3,

βM1 = 1.77+0.52
−0.54 × 10−4 fm3, (3.15)

that are in good agreement with the ones obtained by the TAPS collaboration
(Eq. (3.5)), but disagree with the results obtained within EFT frameworks using
the “selected” database (Eqs. (3.7) and (3.9)).

3.3.5 PDG global average values for the proton scalar po-
larizabilities

The Particle Data Group (PDG) includes in its annual review a global average
value for the two proton scalar polarizabilities αE1 and βM1. The current quoted
values are [55]

αE1 = (11.2± 0.4)× 10−4 fm3,
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Table 3.1: Summary of the main experimental extractions of the scalar polariz-
abilities. All the values of αE1 and βM1 reported in this table were obtained from a
DR-based fit of the unpolarized Compton scattering cross-section data measured
in each single experiment. All the fits were done using the Baldin sum rule con-
straint α+β = 14.2×10−4 fm3 (in Ref [67] authors used α+β = 13.8×10−4 fm3).
The quoted errors, when given, are statistical, systematic and theoretical, respec-
tively.

First author Ref. ωγ [MeV] θγ′ [◦] αE1 [10−4fm3] βM1 [10−4fm3]

Federspiel [63] 32− 72 60, 135 10.9± 2.2± 1.3 3.3∓ 2.2∓ 1.3

MacGibbon [66] 70− 148 90, 135 12.5± 0.6± 0.7± 0.5 1.7∓ 0.6∓ 0.7∓ 0.5

Hallin [65] 136− 289 25− 135 9.8± 0.4± 1.1 4.4∓ 0.4∓ 1.1

Zieger [64] 98, 132 180 10.62+1.25+1.07
−1.19−1.03 3.58−1.19−1.03

+1.25+1.07

Olmos de Léon [67] 55− 165 59− 155 12.1± 0.4∓ 1.0 1.6± 0.4± 0.8

βM1 = (2.5± 0.4)× 10−4 fm3. (3.16)

These averaged values are obtained using the results from [49, 52, 66, 67, 76]. It
is interesting to note how the averaged values quoted by the current review are
significantly different from the ones quoted in the 2012 review [77]:

αE1 = (12.0± 0.6)× 10−4 fm3,

βM1 = (1.9± 0.5)× 10−4 fm3. (3.17)

This shift is due to the introduction in the average of the fit results obtained
using HBχPT from McGovern et al. [52]. This causes also a contraction in the
uncertainties of the two scalar polarizabilities, despite this additional analysis not
being based on new data but the same dataset already used before.

The results mentioned in this chapter are summarized in Tables 3.1 and 3.2.
Figure 3.4 shows the experimental results discussed in Sections 3.1.1, 3.1.2, 3.1.4
and 3.1.5 together with the BχPT prediction (Section 3.3.1) and the fit results
obtained using HBχPT (Section 3.3.2) and DR (Section 3.3.4) frameworks. The
black circle represents the global average quoted by the PDG. From the bubble
plot in Fig. 3.4, it is easy to see how the value of βM1 extracted using DR-
based models — black full and dashed circles as well as the red circles — is
systematically lower than the ones obtained using χEFT— green and blue circles.
This observation seems to indicate that the source of the differences between the
various extractions of the scalar polarizabilities could arise from the differences in
the theories. Nevertheless, as it was already discussed at the end of Section 3.3.2,
the choice of the “selected” database with the exclusion of some of the points from
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Table 3.2: Summary of the main theoretical average of the scalar polarizabilities.
The first row is a pure theoretical prediction without the fit of any experimental
data. The last row is a global average of some of the averages present in this table.
All the other values of αE1 and βM1 were obtained from a fit of the unpolarized
Compton scattering cross-section data published in the given references. All the
fits were done using the Baldin sum rule constraint α+β = 13.8×10−4 fm3. The
quoted errors, when given, come from statistics, theory models and Baldin sum
rules, respectively.

First author Ref. Datasets Theory αE1 [10−4fm3] βM1 [10−4fm3]

Lensky [46] — BχPT 10.8± 0.7 4.0± 0.7

Olmos de Léon [67] [63, 64, 66, 67] DR 12.1± 0.3∓ 0.4 1.6± 0.4± 0.4

McGovern [52] [58, 60, 62–67]a HBχPT 10.65± 0.35± 0.3± 0.2 3.15∓ 0.35∓ 0.3± 0.2

Lensky [74] [58, 60, 62–67]a BχPT 10.6± 0.25± 0.4± 0.2 3.2∓ 0.25∓ 0.4± 0.2

Pasquini [11] [58–67,69] DR 12.03+0.48
−0.54 1.77+0.52

−0.54

PDG [55] [49, 52, 66, 67, 76] — 11.2± 0.4 2.5± 0.4

a One single point was excluded from both Refs. [63, 67]

the fit could have had an even stronger impact on the final results. Another factor
that can partially explain this disagreement is the value of the spin polarizabilities
used in the model for the fit. In the work of Ref. [11], the authors used for the spin
polarizabilities the experimental values published by the A2 collaboration [18],
which was the first experimental extraction of these parameters. However, in
the effective field theories the values of these parameters are predicted by the
theory and not given as an input. To estimate the impact of these ingredients,
namely the selection of the database and the spin polarizabilities values, to the
fit of the scalar polarizabilities, Pasquini and colleagues [11] performed the fits
using both the full and the “selected” database and both the experimental and
the predicted spin polarizabilities values from Refs. [18] and [45], respectively.
The results can be seen in Table 3.3 taken from Ref. [11], where the values in
brackets are obtained using the spin polarizabilities predicted in HBχPT. It can
be seen that the different inputs for the spin polarizabilities can affect the central
value of βM1 up to a ∼ 30%, while the use of the “selected” database leads
to a ∼ 50% increase. Furthermore, a fit within a DR framework using both
the “selected” database and the spin polarizability values predicted in HBχPT
(brackets in the right column in Table 3.3) seems to be in good agreement with the
values extracted using χEFT-based models. Despite this being a simplistic test,
it gives strong motivations in support of the experimental program conducted at
the MAMI facility for both a first precise extraction of the spin polarizabilities
and for a new precise measurement of the unpolarized Compton scattering cross-
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Table 3.3: Extraction of the proton scalar polarizabilities using a bootstrap-based
fit method within fixed-t subtracted DRs. The values on the left are obtained
using all the datasets available below pion photoproduction threshold, while the
ones on the right are obtained using the “selected” database described in Ref. [45].
In both cases, two different sets of spin polarizabilities were used: the experimen-
tal results from Ref. [18] and the values predicted in HBχPT [45]. The results for
the latter case are reported in brackets. All the values are in units of 10−4 fm3.
The table is reproduced from Ref. [11].

Full “Selected”
αE1 11.99± 0.31 (11.47± 0.30) 11.02± 0.33 (10.46± 0.32)

βM1 1.81± 0.31 (2.33± 0.30) 2.78± 0.33 (3.34± 0.32)

section.

3.4 Lattice QCD calculations of nucleon scalar
polarizabilities

In the recent years Lattice Quantum ChromoDynamics (LQCD) with background
magnetic fields was used to perform the first calculations of the nucleon magnetic
polarizability βM1. This so-called background-field method consists of measur-
ing the mass shift of the nucleon placed in an external classical electromagnetic
field [78], and it was successfully used in the past to compute the nucleon mag-
netic moment [79]. Unfortunately, the implementation of such a calculation for
the proton, the case of interest for this dissertation, is very challenging due to
the Landau quantization levels. A first result was obtained by the NPLQCD
collaboration [80] at the unphysical pion mass mπ ∼ 806 MeV. They obtained for
the proton magnetic polarizability a value

βM1 = 5.22
(
+0.66
−0.45

)
(0.23)× 10−4 fm3 (3.18)

which is of the same order of magnitude as the experimental one presented in
Eq. (3.16), even if they are not in full agreement. In Eq. (3.18), the first un-
certainty is the combination of the statistical and systematic errors from the
extraction of the energy shift, and the systematic error from the fit to the mag-
netic field strength. The second uncertainty accounts for discretization and finite
volume effects. Very recently, a first extrapolation of the nucleon magnetic polar-
izability down to the physical region was published [81], using HBχPT framework
and different lattice calculations at several pion masses. The resulting theoretical
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Figure 3.4: Results of αE1 vs βM1 for the proton, obtained from different ex-
periments and theories. The light-green band shows the experimental results for
αE1 − βM1 from Zieger et al. [64], the orange band represents the Baldin sum
rule constraint average [12]. From the experimental side: the straight black
line is Federspiel et al. [63] (obtained fitting αE1 − βM1 with the constraint
αE1 + βM1 = 14.0 × 10−4 fm3), the short-dashed black curve is MacGibbon et
al. [66] (unconstrained fit), and the solid black curve is Olmos de Léon et al. [67]
(unconstrained fit). From the theoretical side: the green solid curve is the BχPT
prediction [46], the blue solid curve is the extraction within HBχPT [52] (using
the “selected” database, with the constraint αE1+βM1 = (13.8±0.4)×10−4 fm3),
the solid red curve is the bootstrap-based fit using fixed-t subtracted DRs [11] (us-
ing the full database, with the constraint αE1 + βM1 = (13.8± 0.4)× 10−4 fm3).
The solid black circle shows the global average quoted by the PDG [55]. The
figure is reproduced from Ref. [11].
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Table 3.4: Predictions for proton spin polarizabilities. HDPV is a subtracted
fixed-t DR calculation [28]. DPV is a hyperbolic (fixed-angle) DR calculation [39].
O(pn) are χEFT calculations at different orders [82–84]. ε3 is a Small Scale Ex-
pansion calculation [82]. HBχPT is a heavy baryon chiral perturbation calcula-
tion [52]. BχPT is covariant baryon chiral perturbation calculation [74]. K-matrix
is a combined K-matrix and DR calculation [85]. γE1 ≡ γE1E1, γM1 ≡ γM1M1,
γM2 ≡ γE1M2, and γE2 ≡ γM1E2. All the values are in units of 10−4 fm4.

HDPV DPV O(p3) O(p4)a O(p4)b O(ε3) HBχPT BχPT K-Matrix
γE1 −4.3 −3.8 −5.7 −1.3 −1.9 −5.4 −1.1± 1.8th −3.3± 0.8 −4.8
γM1 2.9 2.9 −1.1 3.3 0.4* 1.4 2.2± 0.5± 0.7th 2.9± 1.5 3.5
γM2 −0.02 0.5 1.1 0.2 0.7 1.1 −0.4± 0.4th 0.2± 0.2 −1.8
γE2 2.2 1.6 1.1 1.8 1.9 1.1 1.9± 0.4th 1.1± 0.3 1.1
γ0 −0.8 −1.1 4.6 −3.8 −1.1 1.9 −2.6 −0.9± 1.4 2.0
γπ 9.4 7.8 4.6 6.1 3.5 6.8 5.6 7.2± 1.7 11.2

prediction of
βM1 = 2.79(22)

(
+13
−18

)
× 10−4 fm3, (3.19)

is in a very good agreement with the experimental results of Eq. (3.16). The
numbers in parentheses describe the statistical and systematic uncertainties, re-
spectively, that turned out to be competitive with the ones from experimental
extractions.

3.5 Proton spin polarizabilities predictions and
extractions

The present experimental knowledge of the proton spin polarizabilities is much
poorer than the scalar one. This is mainly because the most clean observables
that allow to access the spin polarizabilities are measurable with polarization ex-
periments, in which both a polarized beam and a polarized target are required,
considerably increasing the experimental complexity. Until recently, only two
linear combination of these parameter — γ0 and γπ, introduced in Eqs. (2.9)
and (2.10) — have been directly inferred from other reaction channels, still with
unsatisfactory precision. The first results on this side have been recently pub-
lished by the A2 collaboration [18, 19] as part of a massive Compton scattering
experimental program, of which this dissertation covers the low-energy part. To
counterbalance the lack of experimental data, a strong theoretical interested has
resulted in a large set of theoretical predictions, mainly from dispersion relation
and chiral perturbation calculations. These different predictions are summarized
in Table 3.4. There are two different dispersion relation calculations. As briefly
explained in Section 2.1.3, fixed-t subtracted DRs produce a set of parameters ai
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Table 3.5: Experimental extraction of the proton spin polarizabilities [19] from
the fit of Σ2x, Σ2z and Σ3 asymmetries, using either a HDPV [28, 39, 40] or a
BχPT [47] calculation. All the values are in units of 10−4 fm4.

HDPV BχPT Average
γE1E1 −3.18± 0.52 −2.65± 0.43 −2.87± 0.52
γM1M1 2.98± 0.43 2.43± 0.42 2.70± 0.43
γE1M2 −0.44± 0.67 −1.32± 0.72 −0.85± 0.72
γM1E2 1.58± 0.43 2.47± 0.42 2.04± 0.43

that are directly related to the scalar and the spin polarizabilities. Rather than
fixing the Mandelstam variable t, it is also possible to define dispersion relations
at a fixed angle. These are known as fixed-angle or hyperbolic DRs. Both these
predictions are shown in Table 3.4: HDPV, the fixed-t once-subtracted DR [28],
are more accurate at forward θγ′ ; DPV, the fixed-angle DR [39], are more accurate
at backward θγ′ . The effective field theories, as briefly outlined in Section 2.1.4,
can be used to study the low-energy region of QCD, where the perturbative ap-
proach is no longer usable. In this region, QCD is dominated by confinement and
so pions and nucleons, instead of gluons and quarks, can be considered as the only
relevant degrees-of-freedom. A so-called effective Lagrangian is constructed, that
consists of an infinite number of terms that are organized subsequently according
to the contribution of each term to the resulting amplitude. A breakdown is then
defined, which is normally the mass of the lightest omitted degree-of-freedom.
This provides a power counting scheme that allows to consider a calculation up
to a given order. Table 3.4 shows EFT predictions at different orders: O(p3) is
a third order (p-expansion) calculation, O(p4) are two fourth order calculations,
O(ε2) is a small scale (ε-expansion) calculation [82–84]. HBχPT is a heavy baryon
chiral perturbation calculation [52], and BχPT is a covariant baryon chiral per-
turbation calculation [74]. Finally, K-matrix is a calculation from a “dressed”
K-matrix model, where a traditional K-matrix formalism is combined with dis-
persion relation [85]. The K-matrix formalism is derived from S-matrix scattering
and provides an elegant method to build a unitary T-matrix in the two-body scat-
tering processes. It was first introduced by Wigner and Eisenbud [86,87] to study
the resonances in nuclear reactions. A comprehensive review on the argument can
be found in Ref. [88].

The wide range of values given in Table 3.4 clearly shows how a precise exper-
imental extraction of these parameters is absolutely necessary. The experimental
program on Compton scattering undertaken by the A2 collaboration, which this
dissertation is a part of, has already led to the publication of the first mea-
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surements of the double polarized observables Σ2x [18] and Σ2z [19] introduced in
Section 2.3.3. An extraction of the proton spin polarizabilities was also performed
by fitting these data from the A2 collaboration, together with the results on the
beam asymmetry Σ3 above the pion photoproduction threshold published by the
LEGS collaboration [76]. The fit was performed using both HDPV [28, 39, 40]
and BχPT [47] calculations. The results are summarized in Table 3.5.



Chapter 4

Experimental Setup

The following chapter introduces the experimental apparatus used to carry out
the measurement discussed in this dissertation. The experiment was composed
of two different data taking periods between February and July 2018 performed
at the MAMI tagged photon facility located in the A2 Collaboration hall [89]
at the Institute für Kernphysik of the Johannes Gutenberg-Universität in Mainz,
Germany.

An overview of the setup is showed in Fig. 4.1. A photon beam was produced
via bremsstrahlung on a thin radiator from the 883 MeV electron beam provided
by the MAMI accelerator. The outgoing electrons were then bent using a dipole
magnet and detected by the new tagger spectrometer, while the main electron
beam was absorbed by a beam dump. From simple constraints on the kinematics,
the energy of the generated photons is then determined. The resulting photon
beam was collimated and impinged on a 10 cm liquid hydrogen target. The
resulting particles were detected using the Crystal Ball/TAPS detector system,
described in the next sections. This detector apparatus covers ∼ 97% of the
solid angle around the target, providing a large angular acceptance together with
an excellent angular and energy resolution, essential for the study of Compton
scattering.

4.1 MAMI accelerator

The Mainz Microtron (MAMI) is a cascade of several different accelerating stages
capable of providing an unpolarized or polarized Continuous Wave (CW) elec-
tron beam, with energies up to 1.6 GeV. The use of CW beam is an essential
prerequisite for coincidence experiments in order to reduce the background due
to random coincidences and to improve the beam luminosity.

55
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Figure 4.1: Overview of the experimental apparatus in the A2 Collaboration
hall. The electron beam comes from the left and hits the radiator producing
bremsstrahlung photons. Electrons are bent by the tagger spectrometer in blue,
while the photon beam passes through a collimator and hits the LH2 target.
The particles in the final state are detected by the Crystal Ball and the TAPS
apparatuses in red and light blue, respectively.

Figure 4.2 shows the floor plan of the MAMI facility, together with the new,
still under construction, Mainz Energy-recovering Superconducting Accelerator
(MESA) facility [90]. The MAMI accelerator is composed of four individual mi-
crotrons: three RaceTrack Microtrons (RTMs), divided into a MAMI-A (RTMs
1 and 2) and a MAMI-B (RTMs 1-3) stage, described in Section 4.1.1, and an
Harmonic Double Sided Microtron (HDSM), constituting the MAMI-C (RTMs
1-3 and HDSM) stage, and described in Section 4.1.2. The initial injector linac
provides an electron beam with an energy of 3.97 MeV, which can then be in-
creased up to 14.86 MeV with RTM1, to 180 MeV with RTM2, to 883 MeV with
RTM3 and, the maximum energy of 1604 MeV can finally be reached with the
HDSM. These four stages can provide either a polarized electron beam having a
degree of polarization of about 80% and a current up to 20 µA, or an unpolarized
electron beam with a current up to 100 µA. The electron beam position is main-
tained with a precision of less than 200 µm via a complex control mechanism,
while the beam diameter is roughly 0.1 mm. The energy resolution is less than
13 keV [91].
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Figure 4.2: Floor plan of the MAMI and the newMESA facilities. The experiment
described in this dissertation took place in the hall of the A2 Collaboration (in
red) using the electron beam coming from the MAMI-B stage (in green) of the
accelerator.
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Figure 4.3: Scheme of a racetrack microtron (RTM).

4.1.1 Racetrack Microtron

A microtron is an accelerator in which the beam is guided many times through
the same linac, and a particular version of this is the RTM, so-called because of its
shape shown in Fig. 4.3. It consists of a single linac placed between two big dipole
magnets, and the magnetic field B is chosen in such a way that the electrons,
after each passage inside the linac, are bent by 180◦. Then, the beam is focused
and it travels into the second dipole where it is bent back into the accelerating
stages, following the same radius of curvature since both magnets have the same
magnetic field. The linac uses a radio frequency 50 kW klystron with a frequency
νfr = 2.4495 GHz to alternate the potentials of a series of standing wave cavities,
accelerating a well timed bunch of electrons in each section. The energy gain
after each passage in the linac can be calculated as [92]:

∆E =
ec2B

2πνrf
, (4.1)

where e is the electron charge and c is the speed of light. With the increase in the
energy, also the radius of curvature in the dipole increases, up to the extracting
stage. The maximum energy at the extraction can be easily calculated for each
RTM as:

Eout = Ein +N∆E, (4.2)
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Figure 4.4: Sketch of the HDSM at MAMI facility [93].

where Ein is the injection energy (from a previous stage) and N is the total
number of turns.

4.1.2 Harmonic Double Sided Microtron

The three RTMs composing MAMI-A and MAMI-B allow for a nominal maximum
electron energy of 883 MeV, which is enough for the experiment described in this
thesis. To provide electrons with higher energy, an additional accelerator stage
was planned. The idea of a hypothetical fourth RTM to reach the energy of
1.6 GeV would have not been possible due to the large magnetic field required
to bend the higher energy electron beam 180◦. In particular, an hypothetical
additional RTM stage would have had a magnet with an unrealistic weight of
3000 t. This would have had extremely technical complexities considering that a
precision of ∆B/B 6 10−4 is required.

Therefore, the possibility of modifying the RTM-principle by using more than
two deflection dipoles, so-called polytron, was explored. The best option for the
MAMI facility was found to be a polytron with four deflection dipoles, called
Harmonic Double Sided Microtron (HDSM) [93]. As shown in Fig. 4.4, in the
final design the HDSM consists of four dipole magnets at 90◦ and two linac
accelerators, operating at two different radio frequencies: νrf and 2νrf . In this
setup, each dipole has to bend the beam by only 45◦, reducing the size and the
intensity of each of them. Table 4.1 gives an overview of the parameters of each
stage of the MAMI facility.



60 4. Experimental Setup

Table 4.1: MAMI parameters. The energy values can vary accordingly to the
maximum energy needed. These are the parameters used for this experiment [92–
94].

Injector RTM1 RTM2 RTM3 HDSM
Ein [MeV] 0.611 4.10 15.35 185.9 883.11
Eout [MeV] 4.10 15.35 185.9 883.11 1557.4
σE [keV] 1.2 1.2 2.8 13 110
Number of cycles − 18 51 90 43
B [T] − 0.106 0.573 1.326 1.428
Weight of the magnet [t] − 4.2 92.3 911.6 1030
Length of linac [m] 4.93 0.80 3.55 8.87 8.57− 10.10

4.2 Photon beam

Starting from the unpolarized electron beam produced by MAMI, either an un-
polarized or a linearly polarized photon beam was produced via an incoherent
or a coherent bremsstrahlung process, on an amorphous or a crystalline radiator,
respectively.

4.2.1 Bremsstrahlung process

Bremsstrahlung (German word for “braking radiation”) is electromagnetic radi-
ation produced by the deceleration of a charged particle deflected by another
charged particle [95], in this specific case an electron deflected by an atomic nu-
cleus. The process is obviously regulated by energy and momentum conservation.
Considering an incoming electron with initial state (E, ~p) and final state (E ′, ~p′),
the outgoing photon (k,~k) and the recoiling nucleus (T, ~q) are related by:

E = E ′ + k + T, (4.3)

~p = ~p′ + ~k + ~q. (4.4)

Since the nucleus is extremely heavy compared to the electron, the recoil kinetic
energy

T =
|~q|2

2M
(4.5)

is negligible. The transfer momentum ~q is limited both by kinematics, which
set a lower limit, and by the fact that the bremsstrahlung cross-section drops off
rapidly with the increasing of ~q, setting an effective upper limit. By introducing,
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Figure 4.5: Sketch of the allowed kinematic region for bremsstrahlung in the
transverse momentum space. The “pancake” shape is clearly visible. Figure
taken from Ref. [97]

for convenience, the fractional energy

x =
k

E
(4.6)

and by splitting the momentum ~q in terms of the transverse qt and the longitudinal
ql component, one can define the allowed range as [96]:

0 ≤qt ≤ 2x, (4.7)

δ(x) ≤ql ≤ 2δ(x), (4.8)

where δ(x) is the minimum of ql, defined as:

δ(x) =
x

2E(1− x)
. (4.9)

In momentum space these limits define a so-called pancake region, showed in
Fig. 4.5: a shallow volume that is normal to, and centered on, the ~p direction [96].
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4.2.2 Incoherent bremsstrahlung

Incoherent bremsstrahlung happens when the electron beam impinges on an
amorphous radiator, for example a thin copper foil as in this experiment. The
electrons interact with the Coulomb field of the atomic nucleus and in this case
each point of the pancake region in momentum space can be the end point of
the recoil vector ~q. The cross-section for incoherent bremsstrahlung is described
by a Bethe-Heitler distribution, which rapidly decreases as the photon energy
increases (almost an 1/E behavior).

4.2.3 Coherent bremsstrahlung

An electron beam impinging upon a thin crystal will produce both incoherent
and coherent radiation. In the latter case, the incident electron interacts with the
whole crystal, and not with a single nucleus. This allows for a greatly enhanced
bremsstrahlung cross-section at discrete values of ~q. These enhancements show
up as broad peaks superimposed upon the normal incoherent bremsstrahlung
spectrum, with intensity comparable to or greater than the incoherent part.

Generally speaking, a crystalline radiator is a material whose atoms are ar-
ranged in a highly ordered structure. This pattern, the crystal’s unity cell, repeats
at a point known as a lattice point and extends in all directions, forming a crystal
lattice. This unity cell is represented in terms of the three primitive lattice vec-
tors (~a, ~b, ~c). It is possible to define a reciprocal crystal lattice, that is correlated
to the direct one. The corresponding reciprocal lattice vectors (~a∗, ~b∗, ~c∗) are
then related to the direct ones by:

~a∗ = 2π
(~b× ~c)

(~a×~b) · ~c
, (4.10)

~b∗ = 2π
(~c× ~a)

(~a×~b) · ~c
, (4.11)

~c∗ = 2π
(~a×~b)

(~a×~b) · ~c
. (4.12)

Vectors and planes in a crystal lattice can be described introducing the Miller
indices (h, k, l) [98], these indices can be used to define a reciprocal lattice vector
~g as:

~g = h~a∗ + k~b∗ + l~c∗. (4.13)

While the constraints on the momentum transfer ~q given in Eqs. (4.8) and (4.9) are
still valid, the coherent bremsstrahlung process places an additional constraint.
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Figure 4.6: Example of the enhancement spectrum taken in March 2018, obtained
from coherent bremsstrahlung on a thin diamond radiator. The three main peaks
are indicated using the Miller indices of the reciprocal lattice vectors.

In particular, the recoil vector ~q must have its end point within the pancake
region and, at the same time, be equal to a multiple n of the reciprocal lattice
vector ~g:

~q = n~g. (4.14)

Equation (4.14), known as Laue condition, fixes the plane of the electron deflec-
tion and consequently the emitted photons are linearly polarized with the electric
field vector oscillating in the plane given by the incoming electron momentum ~p

and the lattice vector ~g [99]. These additional constraints result in a peak in the
photon spectrum with a sharp discontinuity as soon as the fraction energy x is
high enough for the reciprocal lattice vector ~g to exit the pancake region. This
upper limit is given by,

xd =
2Eδ

1 + 2Eδ
, (4.15)

where δ is defined in Eq. (4.9), and the consequent discontinuity is known as
coherent edge [96].

4.2.4 Linear polarization

The enhancement, R, in the bremsstrahlung cross-section due to coherent pro-
duction can be found as

R =
σcrystal

σincoh
, (4.16)
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where σcrystal = σcoh + σincoh.
An example of the enhancement spectrum taken during the March 2018 beam-

time is shown is Fig. 4.6. The plot shows the coherent peak around ωγ ∼ 140 MeV
with a sharp drop right after it, known as coherent edge. This enhancement cor-
responds to the coherent bremsstrahlung off the [022] reciprocal lattice vector. A
second polarization peak is also visible around ωγ ∼ 230 MeV, corresponding to
the [044] reciprocal lattice vector, as well as a third one at higher energies related
to the [066] reciprocal lattice vector. The enhancement spectrum is obtained de-
tecting the distribution of the electrons in the focal plane detector, described in
Section 4.3.1. The incoherent contribution σincoh in the enhancement spectrum
is estimated by detecting the same electron distribution using an amorphous ra-
diator, a 10 µm copper radiator. Finally, the plot shown in Fig. 4.6 is obtained
by dividing the crystal distribution σcrystal with the incoherent one.

The coherent part σcoh of the bremsstrahlung production can be expressed in
terms of the parallel and perpendicular components,

σcoh = σ‖ + σ⊥, (4.17)

whose photon polarization vectors are parallel (σ‖) and perpendicular (σ⊥) to the
orientation of a reference plane defined by the incoming electron and the lowest
reciprocal lattice vector ~a∗ of the crystal [99]. The degree of linear polarization
of the photon beam, P , can be calculated as

P =
σ⊥ − σ‖

σcrystal
, (4.18)

or, in terms of the enhancement R,

P =

(
1− 1

R

)
σ⊥ − σ‖

σcoh
. (4.19)

4.2.5 Stonehenge technique

The orientation of the crystal with respect to the electron beam is crucial to
produce a linearly polarized photon beam, as discussed in Section 4.2.3. The
coherent peak is produced by scattering off one specific set of reciprocal lattice
vectors which have to lie inside the allowed momentum pancake region.

A correct alignment of the crystal is therefore critical to obtain the desired co-
herent spectrum for the experiment. A manual alignment could be performed by
laser measurements and a careful mounting of the crystal on a goniometer [100].
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However, this would need an extremely precise knowledge of the orientation of
the beam and of the orientation of the lattice planes inside the crystal. To
overcome these technical difficulties, the so-called Stonehenge technique was de-
veloped [101], and it is now commonly used in all the bremsstrahlung facilities
around the world. It was applied at the beginning of this experiment to align the
diamond radiator.

To perform the alignment, the crystal was mounted on a five-axis goniometer
that can be controlled in order to vary the crystal orientation. The Stonehenge
technique consists of rotating the crystal on its horizontal and vertical axes, θh
and θv respectively, and to study how the level of enhancement varies with orien-
tation. During this scan, the two orientations, θh and θv, are varied sinusoidally
by moving the crystal axis in a cone of a given radius, and after each step a
bremsstrahlung enhancement spectrum is taken. The intensity of the enhance-
ment is then plotted as a function of the photon energy and the two orientation
coordinates, θh and θv. An example of the resulting plot, known as Stonehenge
plot is shown in Fig. 4.7. The color intensity indicates the intensity of the en-
hancement. The areas with the strongest intensity indicate the scattering from
the sets of planes defined by the reciprocal lattice vector [022], and the points
where they converge at ωγ = 0 (inner part of the colorful disk in the plot), in-
dicate where the set of planes is parallel to the beam. Using those points, it is
possible to obtain a complete set of coordinates to correctly align the crystal. A
complete discussion of this technique and a step-by-step guide to use it can be
found in the original paper in Ref. [101].

4.2.6 Collimation

The collimation of the photon beam is of primary importance to keep the beam
from impinging on the beam pipe or on the target structure instead of on the
target itself, creating undesired background. Furthermore, in the case of coher-
ent bremsstrahlung, the collimation can be used to increase the degree of the
linear polarization of the photons since the angular distribution of coherent and
incoherent bremsstrahlung have different behaviors.

The photons produced via incoherent bremsstrahlung are emitted in a cone
with an opening angle given by [102]

θγ =
mec

2

E
, (4.20)

from which it is clear that the distribution depends only on the incoming elec-
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Figure 4.7: Example of a Stonehenge plot produced during the setup of the exper-
iment. It was made by rotating the crystal about horizontal and vertical axes by
varying the coordinates θh and θv, respectively. After each step an enhancement
spectrum is acquired. These enhancement spectra are shown in the plot, where
the radial axis corresponds to the beam energy and the color gradient to the level
of enhancement.
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tron beam energy E. Thus, the collimation of incoherent bremsstrahlung photons
stops a fraction of the total photons that is independent of the photon energy.
On the other hand, the angular distribution of the coherent bremsstrahlung de-
pends on the photon energy. In particular, the emission angle θγ becomes smaller
when the photon energy approaches the coherent edge xd [96]. This causes two
different effects. The collimation suppresses polarized photons more in the energy
region further above and below the coherent edge, leading to a reduction of the
polarization degree far from the peak and hence a narrowing of the peak itself.
On the other hand, in the peak region where the emission angle is smaller for
polarized photons, it stops more unpolarized radiation, increasing the maximal
polarization degree.

It is therefore clear that a small collimator can enhance the degree of linear
polarization, but it also reduces the number of photons that reach the target,
namely the beam flux. It is therefore important to balance these two different
effects. After different tests performed in a dedicated test beam, a 3-mm lead
collimator was found to be the best solution for this experiment.

4.3 A2 Apparatus

4.3.1 Photon tagging spectrometer

The energy of the photons created via bremsstrahlung (Section 4.2.1) is inferred
using the Glasgow Photon Tagging Spectrometer (or simply Tagger). It uses a
large dipole magnet to bend the trajectory of the electrons. The magnetic field
is chosen depending on the electron beam energy E, such that the electrons that
do not emit a photon passing through the radiator are bent into the beam dump,
as shown in Fig. 4.1. However, those electrons that radiate and lose part of their
energy due to bremsstrahlung are bent with a radius of curvature given by the
simple equation,

r =
p′

eB
. (4.21)

For a fixed value of the magnetic field B, the radius of the curvature depends
only on the momentum p′ of the electron, as is clear from equation Eq. (4.21).
Most of the bent electrons are then recorded by a focal plane detector composed
of 328 plastic scintillators, each coupled to a Silicon PhotoMultiplier (SiPM). The
physical position of the scintillator hit by the electron provides information on its
energy, Etagg. By knowing this information and the energy of the electron beam
coming from MAMI E, it is straightforward to calculate the energy of the photon
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Figure 4.8: Sample distribution of the hit in the tagging spectrometer. The
brown curve is obtained using an amorphous radiator and it shows a clear 1/ωγ

incoherent bremsstrahlung distribution. The green curve is obtained using a
diamond radiator and it shows the enhancement due to the peak of the coherent
bremsstrahlung.

emitted via bremsstrahlung through the energy conservation:

ωγ = E − Etagg, (4.22)

where the tiny contribution from the energy of the recoil nucleus was neglected.
The distribution of the hits in the tagging system follows the expected bremsstrahlung
distribution, as shown in Fig. 4.8. The main detectors of the tagging spectrom-
eter underwent a major upgrade in 2017. The new version has an extremely
flexible modular design and in the configuration used for this experiment (the
first one after the upgrade) it had 41 modules with 8 channels each, for a total
of 328 channels. In the spring of 2019, an additional 10 modules were added
to extend the coverage in the high photon energy region, bringing the total to
51 modules and 408 channels. Each channel is composed of a plastic scintilla-
tor (EJ200) rod, 30 mm long with a 6 × 6 mm base, read out by a 6 × 6 mm
SensL-SiPM with a bias voltage of 25 mV. The signal is then guided using long
Ethernet cables outside the region with intense radiation and is fed to a Constant
Fraction Discriminator (CFD). This configuration assures a single-counter time
resolution δt = 0.1 ns [103]. The new faster detector also allows for a consistent
increase in the electron rate, and so in the beam intensity, up to a certain point



4.3. A2 Apparatus 69

0 100 200 300 400 500 600 700
 [MeV],labγω

0

0.5

1

1.5

2

2.5

3

3.5
 [M

eV
]

,la
b

γ
ω∆

0

0.5

1

1.5

2

2.5

3

3.5

4

3−10×

/E
,la

b
γ

ω∆

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
/E,labγω

(a) Tagger energy resolution.

0 100 200 300 400 500 600 700
 [MeV],labγω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 [M
H

z/
M

eV
]

,la
b

γ
ω∆

R
at

e/

Full spectrometer

First 5 modules off

 

(b) Tagger rates.

Figure 4.9: (a) Tagger channel resolution as a function of the tagged photon
energy ωγ. The right and top axes shows these values as fraction of the electron
beam energy E = 883 MeV. (b) Example of rates in the tagging spectrometer in
MHz per MeV. The black curve represent the situation of this experiment, with
first channel running at ∼ 2.5 MeV, the blue curve illustrates a case with the first
5 modules off.

after which the loss of signals due to pile-up starts to become relevant. A single
counter rate limit of 2.5 MHz was employed to keep the pile-up below 5%. This
is a significant improvement by a factor 2.5 compared to the old setup and it was
crucial to obtain the high statistics needed to make this measurement compet-
itive. In the configuration with 41 modules, photons can be tagged in a range
of momentum from 4.3% to 86.1% (from 4.3% to 93.0% with 51 modules) of the
incoming electron beam energy E. The energy resolution relative to E varies over
the energy spectrum, from low to high photon energies, from 0.4% to 0.11%, and
hence the total resolution varies from 3.47 MeV to 1.03 MeV, respectively. This
performance is well illustrated in Fig. 4.9a.

The modular design, clearly visible in Fig. 4.10, is extremely convenient since
it permits one to easily remove some modules that are not used, for example in
the low photon energy region where the radiation is more intense, without making
any changes to the readout or to the data acquisition system. This can allow for
much higher rates in the central part of the tagging spectrometer, as shown by
the red curve in Fig. 4.9b. Moreover, it gives easy access to each single module
allowing for maintenance operations and swapping of damage components.

4.3.2 Liquid hydrogen target

The linearly polarized photons, after being collimated, travel down the beam line
for 4.5 meters to the experimental area, where they impinge on an unpolarised
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Figure 4.10: Picture of the new modular detector of the tagging spectrome-
ter [104].

Figure 4.11: Liquid hydrogen target cell [105].



4.3. A2 Apparatus 71

CB

NaI

PID

MWPC

Target

TAPS

BaF2

PbWO4

Figure 4.12: Sketch of the detector system in the A2 Collaboration hall. The
photon beam comes from lower right and hits the target at the center of the
Crystal Ball (CB). The different detectors are visible: the Particle Identification
Detector (PID), two Multi Wire Proportional Chambers (MWPCs) and the CB,
around the target from the innermost, and TAPS in the upper left corner, covering
the forward region.

liquid hydrogen (LH2) target. The target system consists of five different compo-
nents: the target cell, located in the center of the detector apparatus, the liquid
H2 supply line, a 2 m2 gas storage tank, the gas liquefier and the gas compres-
sor. The cylindrical target cell (showed in Fig. 4.11), made of 125 µm Kapton
surrounded by 8 layers of superisolation foil (each made of 8 µm Mylar and 2
µm aluminum), has a diameter of 4 cm and a length of (10.0 ± 0.1) cm [105].
During normal operation mode, about 25% of the gas is liquid and the temper-
ature of the target nose is approximately 20 K. The pressure is automatically
kept stable at (1080 ± 2) mbar by a dedicated system, leading to a density of
(70.548±0.01)×10−3 g/cm3, which corresponds to 4.249×1023 protons/cm2 [105].

4.3.3 Detectors

The apparatus used for the detection of the outgoing particles created in the
scattering processes is shown in Fig. 4.12. Starting from the inner part, the
system includes a thin segmented barrel of scintillator, two cylindrical multi-wire
proportional chambers and an highly segmented calorimeter called the Crystal
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Figure 4.13: Crystal Ball detector installed in the A2 Collaboration experimental
hall. The photon beam comes from the left, outside the figure, and hits the target
in the center of the CB. TAPS, covering the forward region, is also visible on the
right. Figure taken from Ref. [106].

Ball. These detectors together can cover a big part of the solid angle: φ ∈ [0, 2π)

and θ ∈ [21◦, 159◦]. A wall of scintillators, called TAPS, is used to cover the very
forward polar angles. All this apparatus together covers 97% of 4π solid angle.

4.3.3.1 Crystal Ball

The Crystal Ball (CB) is a highly segmented spherical calorimeter built in the
1970’s at the Stanford Linear Accelerator Center (SLAC). It ran at SLAC for
eight years, playing a crucial role in many of the first measurements of the J/ψ.
In the past years, it was used in other laboratories between USA and Europe,
such as DESY in Hamburg and Brookhaven National Laboratory (BNL) in the
state of New York. Finally, in 2002, its mechanical set-up was improved and
the detector was relocated to the experimental hall of the A2 Collaboration at
MAMI [107]. Its current location can be seen in Fig. 4.13.

The CB is an icosahedron, with 672 NaI crystals each shaped as a tapered
truncated triangular pyramid. Each of its 20 faces (called “major triangles”)
is divided into 4 smaller triangles (called “minor triangles”) and each of these
triangles is again divided into 9 smaller triangles, for a total of 720 different
sectors, as shown in Fig. 4.14. Considering that 48 sectors are unoccupied to
make space for the entrance and the exit of the beam, 24 in the front and 24 in
the back, respectively, we have in total 672 crystals. For technical and practical
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Figure 4.14: Sketch of the geometry of CB and of its crystals [108].

reasons, the detector is divided into two different hemispheres, with inner and
outer radii of 25 cm and 66 cm, respectively. Each crystal, as show in Fig. 4.14,
is 40.6 cm long. The triangular sides at the top of the pyramid (that corresponds
to the inner surface of the detector) are 5.1 cm wide, while the ones at bottom
of the pyramid (outer surface of the detector) are 12.7 cm wide. All crystals are
optically isolated, individually wrapped in reflector paper and Mylar and they
are also coupled to individual PhotoMultiplier Tubes (PMTs). Note that 27 of
them were replaced with a new model a couple of months before the run periods
used in this dissertation.

This detector is perfectly suited for measuring photon energy and the high
granularity improves the resolution. The photons normally released their energy
in a cluster of 3 − 4 crystals, for the energy ranges relevant in this work. Fur-
thermore, µ± can be stopped up to a kinetic energy of ∼ 233 MeV, π± up to
∼ 240 MeV, K± up to ∼ 341 MeV and p up to ∼ 425 MeV. The energy resolution
is σE

E
= 2%

4√E
(3−4% in the region of interest), the time resolution σt = 50 ns, and

the polar and the azimuthal angular resolutions are σp = 3◦ and σa = σp

sin θ
[107].

4.3.3.2 Particle Identification Detector

The PID is a cylindrical detector with an inner diameter of 116.5 mm and is made
of 24 plastic scintillators. The scintillators are 500 mm long, 15 mm wide and
4 mm thick and they have a trapezoidal shape in order to minimize the empty
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Figure 4.15: A sketch of the PID [23].

space between them, as seen in Fig. 4.15. Each element is individually wrapped
in a Mylar foil and coupled to a PMT. The PID covers the full solid angle of CB
and each of its element covers 15◦ of the azimuthal angle.

The PID was built and developed by the group of colleagues from the Ed-
inburgh University at the beginning of 2000’s, as an additional tool for charged
particles identification. Due to the limited time resolution of CB and to its small
inner radius and long crystal length, it is not possible to use the Time-of-Flight
(ToF) technique to distinguish among the different types of charged particles. The
charged particle identification is instead done using the ∆E/E method, based on
the Bethe-Bloch formula. The small thickness of the scintillators causes a charged
particle to deposit only a small fraction of its energy in the PID, before leaving all
the rest inside CB. In particular, pions and electrons deposit a rather small part
of their energy in the PID, being minimal ionizing particles. On the other hand,
protons tend to release a higher fraction of their energy before leaving the PID
scintillator, especially if they have low kinetic energy. These different behaviors
allows for a clear separation of these three different types of charged particles, as
is evident from a typical ∆E/E plot showed in Fig. 4.16.

4.3.3.3 Multi Wire Proportional Chambers

The two MWPCs in the apparatus of the A2 Collaboration, shown in Fig. 4.17,
were developed and built by the group of colleagues from the National Institute
of Nuclear Physics (INFN) in Pavia using the old MWPCs of the DAPHNE ex-
periment as a prototype [71]. They are used for the charged-particle tracking
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Figure 4.16: Example of a typical ∆E/E plot based on the Bethe-Bloch formula.
The energy deposited in the PID is plotted on the y-axis as function of the total
energy deposited in the CB. Electrons and pions are visible in the bottom of the
plot, since they deposit a rather small amount of their energy in the PID, being
minimal ionizing particle. The protons, especially the low-energy ones, tend to
release a higher fraction of their energy, and so they distribute in the typical
banana-shaped region visible in the middle left part of the plot.

Figure 4.17: (a) Picture of the inner and outer cathodes during repair of the
MWPCs. (b) Picture of the MWPCs installed inside the CB.
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Figure 4.18: Coordinate system used in the MWPCs analysis. The photon beam
comes from the bottom and travels along the z-axis. Within each chamber the
azimuthal α and longitudinal zeta coordinates are evaluated from the charge
distribution induced on the cathode strips. Since each pair of inner and outer
strips cross each other twice, the position of the hit wires is needed to resolve the
ambiguity. Figure taken from Ref. [71].

and they normally sit between the PID and CB, as shown in Fig. 4.12, covering
the same solid angle fraction. This configuration was necessitated by the spatial
constraints inside CB and it is not optimal since the trajectory of the particle
may be affected by the interaction with the PID. Nevertheless, due to the small
thickness of the scintillators the loss in tracking resolution is small and can be
corrected. Each chamber is composed of two coaxial 1 mm thick Rohacell cylin-
ders, with a gap of 8 mm in between filled with a mixture of gas composed of
69.5% of argon, 30% of ethane and 0.5% of Freon [109]. At the center of the gap
between the two cylinders there is a layer of anode wires, parallel to the beam.
The 20 µm diameter wires are made of tungsten plated with gold and they are
equidistantly placed at 2 mm from each other, with the exception of the very last
of each chamber that is slightly closer to the previous one, due to small mechan-
ical imperfections. As shown in Fig. 4.18, a layer of cathode aluminum strips,
0.1 mm thick and 4.0 mm long, is placed on the outer and inner surface of the
smaller and the bigger cylinders, respectively. These strips are spiraled around
the cylinder, in opposite directions, at ±45◦ respect to the wires and 90◦ with
respect to each other. In total, the inner chamber has 232 wires, 69 inner strips
and 77 outer strips; the outer chamber, instead, has 296 wires, 89 inner strips
and 97 outer strips.
During the data taking, a positive voltage of 2500 V is applied to the wires



4.3. A2 Apparatus 77

(a) Design [110]. (b) Picture.

Figure 4.19: (a) Design and (b) picture of a single BaF2 crystal.

while the strips are connected to ground. A charged particle that goes through a
wire chamber ionizes the gas inside it, producing a number of electron/hole pairs
that is proportional to the quantity of deposited energy. Thanks to the voltage
applied, the generated electrons (holes) drift in direction of the anode (cathodes)
and due to the inverse proportionality of the electrical field to the distance, when
they get closer to the wire (10−20 µm), they start producing more electron/hole
pairs, generating a usable signal that is still proportional to the initial deposited
energy.

The signals coming from the wires (electrons) and the strips (positive ions)
can be used to reconstruct the track of a charged particle with a better angular
resolution compared to the CB. In particular, by requiring two signals per cham-
ber per track, it is possible to obtain an angular resolution of 2◦ for both the
polar and azimuthal angles [71].

4.3.3.4 Two-Armed Photon Spectrometer

The Two-Arm Photon Spectrometer (TAPS) [110, 111] is a versatile calorimeter
that can be used for the detection of high energy photons coming from neutral
meson decays at forward polar angle (θ < 20◦), the region not covered by CB.
Since it is the only detector in this spatial region, it is also used to reconstruct
the tracks and to measure the energies of charged particles.

As showed in Fig. 4.1, it is placed downstream of the CB, approximately 1.8 m
from the target. The detector consists of 366 BaF2 and 72 PbWO4 crystals placed
to create a “wall” of scintillators. This scheme is reproduced in Fig. 4.20, where
the inner smaller elements are the PbWO4 crystals. Each BaF2 element is 250mm
long, corresponding to approximately 12 radiation lengths, and it has a hexagonal



78 4. Experimental Setup

section with an inner diameter of 59 mm, as shown in Fig. 4.19a. Charged
pions stop inside the crystal up to an energy of ∼ 185 MeV and protons up to
∼ 380 MeV. BaF2 has the peculiarity of having both a fast and a slow scintillation
light component. The former provides an excellent time resolution needed for the
ToF technique, while the latter allows for a precise energy resolution. Together
they can be use for Pulse Shape Analysis (PSA).

The PbWO4 crystals, instead, are smaller with a trapezoidal shape so that
four of them combined together have the same shape of a single BaF2 crystal.
They are placed in the two innermost section of TAPS to improve the high rate
capabilities in the very forward angle. Each PbWO4 is 20 cm long, corresponding
to 22.5 radiation lengths thanks to the high density. Unfortunately, during the
experiment, this section of TAPS was not working properly. Nevertheless, as it
will be discussed later, this issue did not affect the data taking.

Each BaF2 and PbWO4 crystal is individually isolated and wrapped in Teflon
and aluminum, and it is coupled to a PMT. In front of each crystal, there is
also an additional 5 mm thick plastic scintillator paddle, called VETO, readout
by a wavelength shifting fiber coupled to a PMT, which provides both particle
identification and veto abilities. Similar to what happens in the PID, a charged
particle deposits a part ∆E of its energy in the paddle, before leaving the rest,
E, in the crystal. Besides identifying the track as charged, plotting the ∆E/E

allows one to perform charge particle identification, as discussed in Section 4.3.3.2
for the CB-PID system.

Thanks to the unique properties of BaF2 and PbWO4, TAPS has an energetic
resolution of:

σ

E
= 1.8% +

0.8%

E [GeV]
, (4.23)

and an angular resolution of ∼ 1◦ [110].

4.3.3.5 Lead Glass detector

The lead glass detector shown in Fig. 4.21 is a Cherenkov detector with a 100%

efficiency for photon detection. It is essential for the determination of the tagging
efficiency, namely the fraction of photons that pass the collimation, which is
crucial for a precise extraction of cross-sections and asymmetries.

It is a squared box with sides that are approximately 20 cm long made of
lead glass, corresponding to about 20 radiation lengths [55]. Considering that
the photon beam spot at this point has diameter in the order of 3−4 cm, one can
assume that it can collect all the energy released by photons impinging on it. Each
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Figure 4.20: Scheme of the TAPS crystal distribution. In the first two innermost
rings each BaF2 crystal is replaced by four PbWO4 crystals. The different colors
correspond to different sections of electronic acquisition system [112].
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Figure 4.21: Picture of the lead glass detector during maintenance work [113].

photon converts into an electron-positron pair that produces, via bremsstrahlung,
a cascade of charged particles, which emit Cerenkov light that is detected by a
PMT. The lead glass is wrapped in a layer of Mylar to assure optical isolation.

During the production runs, the lead glass detector is not placed inside the
beam line (as shown in Fig. 4.1) and its PMT is off to protect it from the high
photon rate. Usually once per day, the normal data taking is stopped and three
dedicated 30 minutes runs at very low intensity with the lead glass in beam
are collected, two with the diamond (one with the parallel and one with the
perpendicular orientation) and one with the amorphous radiator. Due to the very
high efficiency of this detector, a 10 minute background measurement without the
beam is collected before and after the real measurement. This allows for a precise
subtraction of the noise and of the environmental background. The measurement
is performed with a beam intensity corresponding to a rate of 10 kHz in the
lead glass. These data are used to evaluate the tagging efficiency as explained in
Section 6.1.1.1.

4.3.3.6 Pair Spectrometer

The pair spectrometer is a simple detector installed in the beam line right after
the collimator, as shown in Fig. 4.1. It is mainly dedicated to monitoring the
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Figure 4.22: Sketch of the internal structure of the pair spectrometer.

photon flux during the production runs (see Section 6.1.1.2). Figure 4.22 shows
a scheme of how it works. The photons coming from the collimator impinge on
a thin retractable scattering foil. There are four different molybdenum targets
with different thicknesses from 5 to 20 µm. During this experiment the 20 µm
was used in order to maximize the number of e+e− pairs produced and detected
by the spectrometer. It causes the conversion of a photon into a e+e− pair with
a ∼ 0.1% efficiency. This is enough to perform a precise measurement of the
photon flux, without interfering with the experiment. A strong magnetic field
of 1 T bends both particles into opposite directions and they are then detected
by the two 30 cm long scintillators [114]. If the two particles are detected in
coincidence, the pair spectrometer sends a gating signal to the tagger scalers
(prompt signal). It also provides a delayed gating signal (random signal), which
makes it possible to perform a subtraction of the random coincidences in the
tagging spectrometer. This is necessary, considering that the absolute count rate
of the pair spectrometer is very low compared to the tagger rate.

4.4 Data acquisition

All the detectors forming the apparatus of the A2 Collaboration are read by
PMTs, except for the MWPCs which are read by preamplifiers. The signal coming
from the PMTs must be converted and stored in useful digital information that
can be analyzed, as it will be explained in the next chapter. This process should
be fast enough to keep up with the high rate of events and it is performed by a
complex Data AcQuisition (DAQ) system.

Within a common layout of the front end electronics of a DAQ system, the
analog output of a detector is typically split into two different branches: one is
used to create a trigger for the event and to get a timing information, and the
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other one instead is analyzed to get the energy information. The former branch
usually runs into a discriminator that gives as an output a square signal (with
a predefined width) only if the input is above a given threshold. This allows
one to remove both the electronic noise and the events below the energy range
of our interest. The output of the discriminator is normally then split again
into two new branches: the first can be combined with the signals coming from
the other detectors to form the trigger; while the second is typically sent to a
Time-to-Digital Converter (TDC). This module compares the arrival time of the
detector pulse with the reference one coming from the total experimental trigger,
and gives as an output a digital number corresponding to this time interval. The
second branch of the analog signal coming from the PMTs is sent directly to
an Analog-to-Digital Converter (ADC), which gives as output a digital number
corresponding to the integral (or to the amplitude) of the analog signal. The
ADC normally also takes in input a trigger signal that gives instructions on if
and when to analyze the signal.

4.4.1 Event readout

After an event is detected and the analog signals coming from the different de-
tectors are digitized as explained in the previous paragraph, they have to be read
out. In the A2 Collaboration system this is done in different ways and with
different components, depending on the detector.

Concerning the timing signals, these are read out in the same way for tagger,
CB, PID and MWPCs. They are fed into a Compass, Accumulation, Transfer and
Control Hardware (CATCH) TDCs [115], electronic modules originally developed
for the COmmon Muon and Proton Apparatus for Structure and Spectroscopy
(COMPASS) [116] and the Large Hadron Collider beauty (LHCb) [117] experi-
ments at Conseil Européen pour la Recherche Nucléaire (European Organization
for Nuclear Research) (CERN). While a conventional TDC is started with a sig-
nal from a detector and stopped by a pulse coming from a trigger, the CATCH
TDC does not use start/stop signals, allowing also for time determination of
multiple hits. It uses a constantly running internal oscillator with a frequency
of 8.55 GHz [23]. All the CATCH TDCs are synchronized by a CERN-standard
Trigger Control System (TCS), with only one reference TDC connected to the
experimental trigger providing a reference for the oscillator. When the TDC reg-
isters a timing signal coming from a PMT, the corresponding oscillator count is
stored in a buffer. To determine the timing of the hit, the number in the refer-
ence TDC is then subtracted from the oscillator count and the result is divided
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by the oscillator frequency. In addition, both the tagger and all the detectors in
the Crystal Ball apparatus (CB, PID, MWPCs) have their own reference TCS to
constantly check that they are still synchronized. The timing information from
TAPS instead, is read by a normal TDC.

The energy signal is fed into traditional ADCs for TAPS and PID, while
it is not used for the tagger since the energy is determined by the channel of
the tagging spectrometer that detected the electron. For the CB and MWPCs,
the analog energy signals are read into Sampling ADCs (SADCs). These ADCs
sample their inputs at a given rate and integrate each sample in three predefined
time windows: a section before a pulse, the larger part of the pulse and a section of
the tail after the pulse. The integral of the first time interval allows for automatic
pedestal suppression, by subtracting the baseline from the peak and requiring the
remaining signal to be above threshold. The last temporal region provides a check
for potential pile-up of two or more consecutive events.

4.4.2 Scalers

In addition to the event readout described in Section 4.4.1, the logic outputs of
the discriminators of some detectors are sent into scalers modules, that simply
count the number of pulses. These scalers are then read out only once every 10k
events, a so-called “scaler read”, which means typically every ∼ 1 − 2 seconds.
While during the readout of ADCs and TDCs, the DAQ system is inhibited to
digitize and export the information, the scalers are always counting. This allows
for a precise measurement of both the number of hits in each detector and the
total number of trigger events.

To determine the livetime, which is the percentage of time in which the system
is ready to acquire signal, a 1 MHz pulse generator is used. Its signal is split into
two branches: one runs into a free running scaler which counts the total number
of pulses and the other is sent into a scaler that is inhibited whenever the DAQ
system is also inhibited. The ratio between the two scalers gives the livetime.

4.4.3 Trigger

The DAQ system used in every nuclear physics experiment cannot record and
store data continuously because a given time interval is needed to readout, digitize
and store the signal from all the detectors. For this reason, it is of primary
importance to use a well-developed trigger system, in order to reduce the event
rate by discarding the background — namely all the events in which we are not
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interested — without losing any good events. This trigger system performs an
online pre-selection of the events, so that only the potentially interesting events
are registered and saved.

The first level of the trigger for this apparatus, called “CB Energy Sum”, is
built starting from the analog CB signal. The outputs from the PMTs of CB
are sent into fan-in/fan-out splitting modules in groups of 16 channels. These
modules, in addition to splitting the signal for energy and timing branches, sum
up the 16 analog signals into one. The summed signals from all the 42 fan-
in/fan-out modules are then summed together, providing a single analog signal
representing the total energy deposition in all the NaI crystals. This signal is
split and sent to two different discriminators with two different thresholds, the
higher of them defines the first level trigger. For this experiment, a threshold
of about 40 MeV was applied to cut the electronic noise and most of the cosmic
events, without losing the low energy photons in which we are interested. In the
second discriminator, a threshold of few MeV was set, which improves the timing
performance of the trigger. The output of both the discriminators is put into a
logical AND, creating the first level trigger.

Even if the “CB Energy Sum” was the only trigger used in this experiment, the
A2 Collaboration system has also the possibility to implement more complicated
second level triggers. For instance, it is possible to apply a threshold to each
single group of 16 channels, and to count the number of these 42 clusters above
threshold, giving a “multiplicity”, and accept only events with multiplicity bigger
than a given threshold.



Chapter 5

Event reconstruction and
calibration

During the data taking, the raw digital ADC and TDC values from the different
detectors are collected and stored. These signals need to be decoded and con-
verted into usable energy and time information, to be then used to reconstruct
the particle tracks involved in each event. This is done using two different parts of
software, both being sets of C++-based classes built on top of the ROOT frame-
work and developed internally by and for the A2 Collaboration: AcquRoot and
GoAT. In order to correctly interpret the raw information coming for the DAQ
system, a precise calibration of each single detector is of crucial importance. This
is done separately for each data taking period using an additional set of C++
classes developed to work with AcquRoot, called CaLib. The first part of this
chapter will be devoted to the description of the event reconstruction and of the
software used for it. In the second part, the methods used to perform the detector
calibrations will be briefly explained.

5.1 Software

5.1.1 ROOT

ROOT is an object-oriented program and library developed at CERN by René
Brun and Fons Rademakers [118, 119]. It is mainly written in C++, but inte-
grated with other languages, such as python. Its development was started back in
1994, and since then it has continuously grown hand in hand with the increasing
demands for software efficiency and reliability of the modern nuclear and particle
physics experiments. In fact, its main strength is the high computing efficiency
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required for the online and offline analysis of the huge amount of data collected
in such experiments. This is possible thanks to its key feature, a versatile data
container called tree. The data in the file can be then retrieved entry by entry
by advancing the index of such tree, avoiding memory allocation problems while
handling buffering invisibly. In addition to this, ROOT offers many useful fea-
tures, among them the possibility to produce and save in different formats highly-
customized histograms and graphs, as well as highly-performing algorithms and
routines for Monte Carlo generation, curve fitting and minimization of functional.
For these reasons, ROOT is nowadays used by almost every nuclear and particle
physics experiment around the world.

The most recent version of ROOT is the 6.20/04 [120], released in April 2020.
It was used to create most of the plots showed in this thesis. Unfortunately,
the analysis framework of the A2 Collaboration is still not fully compatible with
ROOT 6, since the latter introduced some major changes, among the others a
new C++ interpreter. For this reason, the data analysis was performed using
ROOT 5.34/36 [121]. Despite this version was released four years ago, it is until
now supported by the authors since it is still widely used in the community.

5.1.2 AcquRoot

AcquRoot [122] is the main acquisition and analysis framework of the A2 Col-
laboration. It contains a hierarchy of classes which decode the ADC and TDC
information from the experimental apparatus to create hits in each individual
detector elements. These hits contains energy and timing information, and they
are then combined using cluster algorithms in CB and TAPS separately. The re-
sulting clusters are then combined with the hits in PID, MWPCs and VETO to
create tracks. All the information about detector hits and tracks are conveniently
stored in ROOT trees. ready to be used by GoAT.

5.1.2.1 Decode hits

As discussed in Section 4.4, each individual element of each detector of the exper-
imental apparatus is coupled to a PMT, whose signals are read both by an ADC
and a TDC. These two electronic modules register a digital value that is propor-
tional to the energy and time of the analog signal, respectively. AcquRoot, while
running, reads each event separately from a data file, and goes through all the
detector elements, converting all the ADC and TDC digital signals into readable
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energy and time information. This can be done using the following equations:

E = gE(C − P ) + qE(C − P )2, (5.1)

and
T = gT (C −O), (5.2)

respectively. In Eq. (5.1) (Eq. (5.2)) gE(T ) is the gain, C is the ADC (TDC)
channel value, P is the pedestal, O is the offset and qE is a quadratic factor. These
six parameters (with the exception of C) are specific for each detector element,
and can slightly vary from data taking period to data taking period. For this
reason, they have to be determined through the calibration process described
later on in this chapter, and they are stored in an SQL database from where
AcquRoot can retrieve them at the beginning of each analysis. Moreover, for
each ADC and TDC element, a low and a high software threshold is applied. A
hit information is stored in the output ROOT tree only if both the ADC and TDC
values pass simultaneously both the thresholds. Table 5.1 gives a set of typical
parameter values for an individual CB element. As can be seen, it is not necessary
to extract the pedestal for the CB elements, since this is done automatically by the
sampling ADCs during the data taking as described in Section 4.4.1. Moreover,
the value of gT reported in the table is constant for all the detector elements since
this is the intrinsic gain of the CATCH TDCs used [123].

In addition to these parameters, information about the geometrical position of
each element is passed to AcquRoot via a configuration file. In particular, for CB
and TAPS, the (x, y, z)-position of the center of each element is given, together
with a list of neighbor crystals used to create clusters, as described below. For
the PID, instead, the position of each element is given in spherical coordinates:
r (mm), θ (◦), and φ (◦).

The tagging system works slightly differently. While the TDC information
is treated similarly as for the other detector, the energy information is given by
which channel detects the electron, as described in Section 4.3.1. The energy cal-
ibration is strongly dependent on the value of the magnetic field, which slightly
varies from data taking period to data taking period. The central energy value
and the width of each channel are then calculated via a script that uses a compli-
cated function with magnetic field and beam energy as input. This function does
not change over time, but since the measurements described in this dissertation
were the first one performed using the new tagging spectrometer, it had to be
tuned using a complicated procedure. Once the energy calibration is produced,
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Table 5.1: Example set of ADC and TDC parameter for a single CB element,
used by AcquRoot to decode the hits information. For the specific case of CB,
the ADC pedestal is provided by the sampling ADC and hence it is not needed
to extract it during the calibration procedure

ADC

Physical channel 3014M1 channel
Gain gE 0.068 MeV/channel
Quadratic factor qe 1.005 (MeV/channel)2
Pedestal P 0.0 channel
Low threshold 2.0 MeV
High threshold 2000.0 MeV

TDC

Physical channel 2033M0 channel
Gain gt 0.117 ns/channel
Offset O −2779.4 channel
Low threshold −100 ns
High threshold 100 ns

(a) NaI cluster. (b) BaF2 cluster.

Figure 5.1: Cluster structure of (a) Crystal Ball and (b) TAPS. The central
crystal is colored in red, together with the nearest neighbors — 12 and 6 for CB
and TAPS, respectively — colored in pink.

it is passed to AcquRoot via a configuration file, together with the number of the
scaler and TDC of each single channel.

5.1.2.2 Clustering

The two calorimeters of the experimental apparatus — CB and TAPS — are
highly segmented detectors. This high segmentation causes particles to release
their energy across multiple elements. This is especially true for photons, the
particles of interest for this thesis, since they produce an electromagnetic shower
at the interaction with the crystals. For this reason, the individual hits need to be
reconstructed into one cluster resulting from the interaction of a single particle.
The first step to create a cluster is to find the crystal with the highest energy
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deposit. This will be the central element of the cluster. The cluster algorithm
then goes through all the crystals surrounding the central one, so called neighbor
elements. All the hits within these elements are then included into the cluster.
Figure 5.1 shows the cluster structure of CB and TAPS. As can be seen, typically
CB and TAPS elements have 12 and 6 neighbors, respectively. The size of a
cluster, namely the number of hits included in it, is an important characteristic
that helps in the particle identification. A photon is expected to create bigger
clusters — 4 − 6 hits each in the energy range 80 − 140 MeV — if compared to
neutron — 1 − 2 hits per cluster. The maximum cluster size can be 13 for CB
and 7 for TAPS.

There are particular cases where the number of neighbors element is smaller,
and so the maximum cluster size. The atypical case for CB is due to its icosahedral
shape. As can be seen in Fig. 4.14, each of the three points of each of the 20 “major
triangles” loses one neighbor. The situation for TAPS is even more complicated
due to the presence of the PbWO4 crystals. As described in Section 4.3.3.4, in
the two most inner rings of the calorimeter each BaF2 crystal was replaced with
a group of four smaller PbWO4 crystals with the same shape. This creates cases
where each crystal can have 6, 12, 18, 21, or 23 neighbors, as depicted in Fig. 4.20.

The total energy of the cluster Etot is defined as the sum of the energy de-
posited in all the crystals included in it as:

Etot =
size∑
i

Ei. (5.3)

The cluster position ~rtot is calculated as

~rtot =

size∑
i

~ri
√
Ei

size∑
i

√
Ei

, (5.4)

where ~ri is the position of each single crystal inside the cluster. The total energy
Etot is compared to a software threshold. If it is above this value the cluster is
accepted and all the hits composing it are removed from the list of the hits in
that event. The remaining hits are fed again in the cluster algorithm to search
for new clusters. This procedure is iterated until all the hits are used to form
clusters.

AcquRoot has two additional clustering features that could be used in par-
ticular cases. One is important when treating very high energetic photons that
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could release energy beyond the nearest neighbors. In such a case, one can ask to
the algorithm to search for energy deposit in any elements within a given distance
from the most energetic one. The other feature is useful to deal with split-offs,
namely when one particle released its energy in what appear to be two separate
clusters. In such cases, the algorithm can try to recombine two separate but close
clusters into one. After Monte Carlo simulation of Compton events in the energy
range of interest for this thesis, namely around the pion photoproduction thresh-
old, it was decided to not use any of these additional features for this analysis.
In fact the photons released all their energy in cluster of 4 − 6 hits each, and
a split-off was observed in less than 2% of the events. This can be easily taken
into account with a Monte Carlo simulation correction, without introducing any
additional error.

5.1.2.3 Tracking

Once the cluster algorithms combined all the hits in the two calorimeters, particle
tracks are created by checking for possible correlations between the clusters, both
in CB and TAPS, and the hits in the charged particle detectors — namely PID
and MWPCs for CB, and VETO for TAPS.

For the Crystal Ball, the tracking algorithm checks for links between all the
three detectors, or any possible pairs. The MWPCs can provide rather precise
polar and azimuthal angular information. Therefore, a link between a hit in the
MWPCs and a cluster in CB is defined using the vector-angle

^MWPCs−CB = cos−1

(
~rMWPCs • ~rCB

‖~rMWPCs‖‖~rCB‖

)
, (5.5)

where ~rMWPCs and ~rCB are the 3D-vectors of the hit in the MWPCs and the
cluster in CB, respectively. A correlation between the two requires ^MWPCs−CB =

[0◦, 20◦], as shown in Fig. 5.2a. The PID detector can only provide φ-information.
Thus, a correlation between a hit in PID and a cluster in CB or between one hit in
PID and another in MWPCs requires the difference between the two azimuthal
angles to be within a selected region. In these cases, as shown in Figs. 5.2b
and 5.2c, typical cuts used are ∆φPID−NaI = [−15◦,+15◦] and ∆φPID−MWPCs =

[−50◦,+50◦]. A correlation between all three detectors requires all these cuts to
be satisfied.

The tracking procedure for TAPS is much simpler. As explained in Sec-
tion 4.3.3.4, a VETO crystal is shaped to match the BaF2 crystal, or the four
PbWO4 crystals, to which it is placed in front of. Therefore, there is a one-to-one
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(c) ∆φPID−MWPCs.

Figure 5.2: Example of angular correlations between MWPCs hits, PID hits and
CB clusters. The dotted red lines indicates the selections used to correlate this
information into a track.
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correlation between a hit in the VETO and the central crystal of a cluster. To
form a particle track in TAPS, these two hits are linked together.

The particle tracks are then stored in a dedicated ROOT tree in the output
file. The energy of the particle track is defined to be the cluster energy of Eq. (5.3).
The time is defined to be the one of the central crystal of the cluster. Both these
values are set to 0 in case of PID-MWPCs correlation without CB. The angular
information θ and φ are normally defined to be the one calculated using the
MWPCs, because of the better resolution if compared to the one from the cluster
algorithm. For the particle tracks without MWPCs hits, the cluster angular
information from Eq. (5.4) is used.

5.1.3 GoAT

Generation of Analysis Trees (GoAT) is a C++-based analysis framework devel-
oped internally to the A2 Collaboration [124, 125]. It uses as input the ROOT
trees from AcquRoot containing event-by-event tracks and hits information, and
it provides methods and algorithms for particle identification and meson recon-
struction. Finally, it allows for an event pre-selection based on specific particle
types, and energy or angular range. The information of the selected events are
then conveniently stored event-by-event in ROOT trees ready for the final phys-
ical analysis described in the next chapters.

5.1.3.1 Particle identification

The first step of the data-sorting procedure operated by GoAT is the particle
identification. The software runs over all the tracks reconstructed by AcquRoot
and it tries to identify what type of particle created each track. A first separation
between charged and neutral tracks is done by checking the presence of hits
associated to the tracks in the PID, MWPCs and VETO. A track is defined as
neutral if there is no hits in any of those detectors. Among the neutral tracks,
a separation between photons and neutrons in CB can be done by cutting on
the cluster size. As explained in Section 5.1.2.2, when photons interact with the
detector they create an electromagnetic shower, which releases their energy across
multiple crystals. On the other hand, neutrons tend to release all the energy in 1-2
crystals. Therefore, a cut on the dimension of the cluster can be a powerful way to
distinguish among these two neutral particles. In TAPS the neutral identification
can be done more easily using ToF and PSA methods. The latter uses the two
different pulses provided by hits in the BaF2 to distinguish between particles of
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different mass, for more information see Ref. [97]. The identification of charged
particle, instead, is done using the ∆E/E method explained in Section 4.3.3.2
for tracks created both using cluster in CB and TAPS.

5.1.3.2 Meson reconstruction

Once the individual tracks are identified, GoAT provides an algorithm for meson
reconstruction and identification. Mesons are unstable particles and they decay
within a very short time, definitely too fast to be detected by the apparatus.
Thus, they have to be inferred by their detected decay products. For beam
energy ωγ < 1.6 GeV, the maximal energy reachable by MAMI, four mesons are
mainly generated: π0, η, ω and η′. GoAT provides a method to reconstruct all of
them.

A meson is normally inferred by calculating the invariant mass of the sum of
the detected daughter particles. In particular, the invariant mass m of a system
of N particles with energies Ei and momentum ~pi (with i = 1, . . . , N) is defined
as:

m =

√√√√( N∑
i

Ei

)
−

(
N∑
i

~p

)
. (5.6)

A similar method is used by GoAT to search for the presence of possible mesons.
The invariant mass is calculated using some of the particles detected by the
apparatus. In particular, to reconstruct the π0 only the particles identified as
photons are used, while to reconstruct η and η′ also charged pions and electrons
are considered. If the calculated invariant mass agrees with the nominal mass
value of the meson, within a given range, the information about the reconstructed
meson are saved in a dedicated ROOT tree. A detailed description of this feature
can be found in Section 5.1.2.2 of Ref. [124].

5.1.3.3 Pre-selection of events

After particle identification and meson reconstruction, all the event-by-event in-
formation are stored in ROOT trees. At this point, GoAT allows for a first event
selection by cutting on the number and the type of reconstructed particles/mesons
in the final state. This is very useful in order to reduce the amount of events to
be accessed in the next steps, discarding clear background events and saving time
during the physics analysis.

For the Compton scattering analysis described in this thesis, a simple iden-
tification among neutral and charged particles was used. In fact, in the energy
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range of our interest (ωγ ∼ 80− 140 MeV), only the scattered photon is detected
while the recoil proton stops inside the target. For this reason, a strict selection
of events with exactly 1 neutral and 0 charged tracks was applied. Nevertheless,
to study possible systematic error introduced by this strict selection, the analysis
was also performed allowing more than one neutral particle. The result of this
test is described in Section 8.1.

5.1.4 A2Geant4

A2Geant4 [126] is a simulation package built to simulate the interaction of par-
ticles with the detection apparatus of the A2 Collaboration. It uses the Geant4
simulation toolkit [127–129], first developed in the mid 90s at CERN. Its develop-
ment, maintenance and user support are taken care by the international Geant4
Collaboration [130] and it is nowadays widely used by many collaborations and
experiments to simulate the passage of particles through matter. All the Monte
Carlo simulations reported in this thesis were done using the Geant4 version 10.04
(patch-02) [131] released in May 2018.

The A2Geant4 package uses as input a ROOT file containing particles 4-
momenta generated using AcquMC, a Monte Carlo event generator included in
the AcquRoot package. AcquMC allows for Monte Carlo generation of simple
physics reactions, such as proton Compton scattering, with a given beam posi-
tion and energy distribution. The 4-momenta of the particle in the initial and
final states are stored in ROOT trees, and their interaction within the experimen-
tal apparatus is simulated by the A2Geant4 package. It includes the two main
calorimeters, CB and TAPS, as well as the three charged particle detectors —
PID, MWPCs, VETO. It gives as output a ROOT file with the deposited energies
and the time information in each detector. It can then be analyzed using Acqu-
Root and GoAT as a normal data file. A detailed description of the simulations
done for this analysis in give in Section 7.4.

5.1.5 CaLib

CaLib [123, 132] is a software developed internally to the A2 Collaboration and
used to calibrate the experimental data. CaLib is based on an SQL database
system. It has an SQL table for each calibration parameter, containing columns
for all the detector elements. It is also possible to add multiple rows, specify-
ing different sets of parameter valid for specific sets of runs. These parameters
are accessed and read by AcquRoot during the analysis, allowing for the use of
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different calibration sets depending on the run number.
As described in the next session, the raw data are firstly analyzed using Ac-

quRoot with a dedicated class that produces all the necessary histograms for the
calibration. These plots are used by CaLib to perform the fits necessary to the
calibration procedure. It also provides a user-friendly Graphical User Interface
(GUI) to display the relevant spectra and to check the goodness of the fit for
each detector element. Moreover, using the GUI it is possible to select among the
different calibration sets, as well as to calculate and write the new parameters on
the SQL database.

5.2 Calibration

The first step of the analysis performed using AcquRoot is the decoding of the
raw digital signals coming from the ADC and TDC modules, as described in
Section 5.1.2.1. This is done using different parameters reported in Table 5.1.
Some of these parameters are fixed, such as the physical address of the modules
of the software thresholds, while others, mainly gains, offsets and pedestals, are
sensitive to environmental conditions and may vary from data taking period to
data taking period. For this reason, it is extremely important to perform a precise
calibration of these parameters before any analysis. The calibration of the data
used in this analysis was performed using CaLib (see Section 5.1.5) following a
precise order, since some parameters may be dependent on some others that need
to be calibrated first. Moreover, in some cases the procedure was iterated multiple
times in order to get a precise result, using every time the new parameters to re-
analyze the data.

5.2.1 Crystal Ball

CB is the main calorimeter of the experimental apparatus. As described in Sec-
tion 4.3.3.1, it is composed of 672 NaI crystals, each read by an SADC and a TDC.
For each element, an energy and time calibration is needed, as well a correction
for the energy dependence of the time, know as time walk.

5.2.1.1 Time calibration

The gain of the CATCH TDC modules used to read the time signal from the NaI
crystals is fixed to gt = 0.117 ns/channel. The TDC offset are instead adjusted for
each channel to eliminate possible differences in cable length or hardware timing.
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(c) CB time distributions: black and
green lines are obtained pre and post cal-
ibration.

Figure 5.3: Example of the spectra used to perform the calibration of CB TDCs
offset. (a) The NaI element is plotted versus the difference in time of two neutral
hits in CB. (b) The time distribution is projected for each CB element, and the
resulting distribution is fitted with a Gaussian function, to get the new offset. (c)
The calibration procedure is iterated multiple times to get the final results.
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To perform this calibration, the NaI element is plotted versus the difference in
time of two neutral hits in CB, obtaining the spectra in Fig. 5.3a. Since this is
done for each element, the histogram is filled twice for each couple of hits: the first
element is filled at its time minus the second hit’s time, and the second element
is filled as its time minus the time of the first hit. In the case of two correlated
hits, such as two photons from a π0 decay, this difference should be zero. The 2-D
histogram is projected onto the x-axis for each bin on the y-axis (corresponding
to each NaI crystal), and the resulting plot is fitted with a Gaussian function, as
shown in Fig. 5.3b. The new offset for the i-th crystal O′

i is calculated as

O′
i = Oi +

µi

gt
, (5.7)

where Oi it the old offset used to create the calibration plot and µi is the mean
of the Gaussian fit.

This procedure was iterated several times, using always the new offset to
create the new calibration spectra. Finally, the mean value of the time difference
for each element converged to zero, as can be seen in Fig. 5.3c.

5.2.1.2 Energy calibration

The calibration of the energy response of the NaI crystals is done using two
different procedures. The first one is performed by placing a 241Am9B source
in the center of the Crystal Ball. The source emits 4.438 MeV photons that
are homogeneously detected by all the elements. The high voltage supplied to
each single PMT is then adjusted until the responses from each tube result in
approximately the same ADC channel. This first hardware calibration is done
regularly once per year by the person responsible for the maintenance of the
detector. Nevertheless, such a calibration done with extremely low energetic
photons cannot be easily extrapolated to the few hundreds MeV energy range in
which we are interested.

The second calibration procedure, which is done for every data production
period, uses the single pion photoproduction reaction, γp → π0p → γγp. In
particular, the invariant mass of the two γ, mγγ, calculated using Eq. (5.6) is
expected to be peaked at mγγ = mπ0 = 134.9 MeV. Using all the neutral clusters
in CB, the invariant mass mγγ is calculated for every cluster pair, and the result
is plotted as a function of the central crystal of each of the two clusters. This
results in the 2-D histogram showed in Fig. 5.4a, and again, as for the time
calibration, each couple fills the histogram twice, once per cluster. Similarly to
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(b) Single element fit.
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(c) mγγ distribution in CB: black and
green lines are obtained pre and post cal-
ibration.

Figure 5.4: Example of the spectra used to perform the calibration of CB ADCs
gain. (a) The NaI element is plotted versus the invariant mass mγγ calculated for
every neutral cluster pair in CB. (b) The invariant mass distribution is projected
for each CB element, and the resulting distribution is fitted with the sum of a
Gaussian and a polynomial function, to get the new gain correction. (c) The
calibration procedure is iterated multiple times to get the final results.
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Figure 5.5: Example of the spectrum used to extract the parameters for the
correction of the time walk effect. The time difference between a hit in CB and a
hit in the tagger is plotted versus the energy deposited in CB, for each element.
The distribution is fitted using the function in Eq. (5.9) to get the parameters
needed for the time walk correction.

what happened for the time calibration, the 2-D histogram is projected into the
x-axis for each bin on the y-axis, and the resulting plot (see Fig. 5.4b) is fitted
using the sum of a Gaussian and a polynomial function, to describe the signal and
the background, respectively. The new gain for the i-th element g′E,i is calculated
as:

g′E,i = gE,i

m2
π0

m2
γγ

, (5.8)

where gE,i is the old gain used to produce the calibration spectra. This procedure
was iterated several times, until the peak of the invariant mass distribution for
each channel turn out to be located at the mass of the π0, as shown in Fig. 5.4c.

As reported in Eq. (5.1), there is an additional quadratic energy factor used
in the conversion of the energy information. This factor accounts for the lack of
linearity in the NaI response for the higher energetic photons. The effect of this
is that after performing the energy calibration using the π0 meson, the invariant
mass of heavier mesons, such as the η, is wrongly reconstructed. To correct for
this, a procedure similar to the one described above is done using higher energetic
neutral clusters to reconstruct the η, and the resulting invariant mass is compared
and centered to mη = 547.8 MeV.

5.2.1.3 Time walk calibration

Due to the slow rise time of the signal in the NaI crystal, the time of the signal is
affected by time walk. This causes a low-energy signal to have a later time trigger
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if compared to a concomitant high energy signal. A correction of this effect is
essential to improve the time resolution of the detector.

To perform such a calibration, the time difference between a hit in CB and a
hit in the tagger is plotted versus the energy deposited for every detector element.
An example for one of the 684 channels is seen in Fig. 5.5. Each plot is then fitted
using the function:

t(E) = a+
b

(E + c)d
, (5.9)

where E is the energy deposited in the crystal and a, b, c, d are free parameters.
These parameters are determined for each individual element, and during the
analysis they are used to correct the cluster time information as:

t′ = t−
(
a+

b

(E + c)d

)
, (5.10)

where t and t′ are the uncorrected and the corrected time information, respec-
tively.

5.2.2 PID

The PID is mainly used for the charged particle identification, as described in
Section 4.3.3.2. The analysis described in this thesis deals with neutral particles
only, and the PID was simply used to distinguish between charged and neutral
cluster, without using the energy information. Among all the detectors in the
experimental apparatus, the PID is the only one whose position can occasionally
change, in particular its azimuthal orientation in respect to CB. For this reason, in
addition to the energy and the time calibration, a calibration of the φ-alignment
is usually performed. This is of crucial importance to correctly link a hit in the
PID with a cluster in CB.

5.2.2.1 Time calibration

The time information of the PID is read using TDC modules similar to the ones
used for CB and tagger. For this reason, also the calibration procedure works in
the same way as described for CB in Section 5.2.1.1. The time difference between
two hits in the PID is plotted as function of one of the two elements, giving
the 2-D plot showed in Fig. 5.6a. For each element, a projection is created and
the obtained distribution is fitted with a Gaussian function (see Fig. 5.6b), and
the new offset is calculated using Eq. (5.7). After one single iteration, the time
difference for all the PID elements was already well peaked at 0.
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(b) Single element fit.

Figure 5.6: Example of the spectra used to perform the calibration of PID TDCs
offset. (a) The PID element is plotted versus the difference in time of two neutral
hits in the PID. (b) The time distribution is projected for each PID element, and
the resulting distribution is fitted with a Gaussian function, to get the new offset.

5.2.2.2 Energy calibration

Due to the small thickness of the PID, charged particles release only a small frac-
tion of their energy in it. This makes a direct calibration almost impossible. The
idea then is to extrapolate the energy release in the PID for different cluster ener-
gies from a Monte Carlo simulation. In particular, with real data, the PID ADC
channel is plotted as function of the cluster energy for protons only. The result
is a ∆E/E plot showing only the proton band, with the raw ADC information
on the y-axis, as in Fig. 5.7a. Projections of this histogram onto the y-axis are
created for different ranges of cluster energy, giving the distribution of the proton
signal over the raw ADC channel (see Fig. 5.7b). Such a distribution is fitted
using a Gaussian function, and the mean ADC channel for each cluster energy
range is found. A similar procedure is done using a Monte Carlo simulation of
protons interacting with the experimental apparatus. For the same cluster energy
ranges, the simulated energy deposition in the PID is evaluated. By plotting the
raw ADC channel value from the Gaussian fit as a function of the expected energy
deposition from the simulation, a linear relation can be extracted performing a
fit, as shown in Fig. 5.7c.

5.2.2.3 φ calibration

The φ parameter of each single element of the PID is found with respect to CB.
To obtain this calibration, for each charged cluster the PID element is plotted
versus the φ information of the correlated cluster, obtaining the 2-D histogram
showed in Fig. 5.8a. A projection for each element is created, and the distribution
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(b) PID ADCs channel distribution from
proton in a given cluster energy range.
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(c) Linear fit to find PID energy calibra-
tion.

Figure 5.7: Example of the spectra used to perform the calibration of the PID
ADCs gain. (a) The PID ADC channel is plotted as function of the cluster
energy for protons only. (b) The distribution of the proton signal over the raw
ADC channel is projected for different ranges of cluster energy, and the obtained
plots are fitted with a Gaussian function to get the mean channel. (c) The same
procedure is repeated for Monte Carlo generated data where the energy deposition
in the PID is calculated using the simulation. By plotting the raw ADC channel
value from the Gaussian fit as a function of the expected energy deposition from
the simulation, a linear relation can be extracted.
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(a) 2-D distribution.
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(b) Single element fit.
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(c) Linear fit to find PID φ calibration.

Figure 5.8: Example of the spectra used to calibrate the φ offset between the PID
and CB. (a) For each charged cluster, the PID element is plotted versus the φ
of the correlated cluster. (b) For each element, the distribution is projected and
fitted using a Gaussian function to find the mean φ value. (c) The PID elements
is plotted as function of the mean cluster φ, and the resulting distribution is fitter
to find the correlation.
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is fitted with a Gaussian function, as shown in Fig. 5.8b. The mean value of the
i-th Gaussian fit gives a φi parameter for the i-th element of the detector. Finally,
the correlation between CB and the PID elements is found with a linear fit of
the distribution of the φ parameters as a function of the 24 different elements, as
shown in Fig. 5.8c.

5.2.3 TAPS

TAPS is the forward calorimeter of the experimental apparatus. As described
in Section 4.3.3.4, it is composed of 366 BaF2 and 72 PbWO4 crystals. Unfor-
tunately, the latter were not working properly during all the data taking period
and it was decided to turn them off. In front of each BaF2 crystal, as well as
in front of each group of 4 PbWO4 crystals, is placed a thin scintillator paddle,
called VETO. The calibration of the signal coming from the crystals is similar to
the one done for CB. Thanks to the fast response of BaF2 crystals, the time walk
calibration is not needed. Nevertheless, the energy calibration is slightly more
complicated due to the two components of the energy response. Furthermore, the
signal coming from the VETO paddles is calibrated similarly to the PID.

5.2.3.1 BaF2 time calibration

TDC gains are usually determined by the persons in charge of the maintenance
of the detector right before the start of the data taking period. This is done by
using different delay cables of known length, to increase the time of the TDC stop
signal. With every cable a short run with cosmics is taken, and from the analysis
of these data, using a dedicated software, it is possible to determine the gain for
each single detector element.

The calibration of the offset is performed similarly to what is described in
Section 5.2.1.1. The time difference of two neutral hits in TAPS is plotted as
function of one of the two elements, producing the plot in Fig. 5.9a. For each
element, the distribution if fitted using a Gaussian function (Fig. 5.9b) and the
new offset is calculated to center the Gaussian in zero. This procedure required
multiple iterations to reach a final satisfying result, showed in Fig. 5.9c.

5.2.3.2 BaF2 energy calibration

As previously mentioned, the BaF2 has the peculiarity of having a fast and a
slow signal component. For this reason, the analog signal coming from each
TAPS crystal is fed into two different ADCs: one with a short integration gate,
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(a) 2-D distribution.
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(b) Single element fit.
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(c) TAPS time distributions: black and
green lines are obtained pre and post cal-
ibration.

Figure 5.9: Example of the spectra used to perform the calibration of TAPS
TDCs offset. (a) The BaF2 element is plotted versus the difference in time of two
neutral hits. (b) The time distribution is projected for each TAPS element, and
the resulting distribution is fitted with a Gaussian function, to get the new offset.
(c) The calibration procedure is iterated multiple times to get the final results.
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(a) Long gate ADC.
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(b) Short gate ADC.

Figure 5.10: Calibration of TAPS ADCs pedestal.

called Short Gate (SG), and one with a long integration gate, called Long Gate
(LG). The LG modules integrate over the full signal, in a similar way to what
happens for the signal from CB. The SG ADCs integrate only the first part of
the signal, the fast component, which is essentially the full signal in case of a
photon, or only a small part of it in case of a nucleon. Combining the SG and
the LG response, the PSA can be performed to distinguish among photons and
neutrons.

The two different sets of ADCs require separate gain calibrations. Since the
LG signal is used to calibrate the SG one, its calibration comes first. The pedestal
calibrations, instead, are performed in the same way for both the ADC sets. The
raw ADC spectra are scanned to find the pedestal, as showed in Fig. 5.10.

LG calibration The LG ADCs gain is calibrated using the procedure described
in Section 5.2.1.2. The invariant mass of 2 neutral clusters is plotted as function
of the central crystal of each cluster, giving the spectra in Fig. 5.11a. Due to the
generally low statistics in TAPS, the invariant mass is reconstructed using also
the events with one neutral cluster in TAPS and one in CB. For this reason, this
energy calibration was performed after the CB one. For each element, a fit to the
distribution is performed (Fig. 5.11b) and the new gain is calculated to center
the invariant mass distribution to the π0 mass. Also this procedure was iterated
multiple times to reach the result in Fig. 5.11c.

SG calibration By definition, the SG ADCs integrate only the fast component
of the BaF2 signal, leaving out the slow part. This causes a direct calibration to
be complicated to performed. It is instead convenient to combine the two signal
components, and to perform the calibration making use of the PSA. This is done
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(b) Single element fit.
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(c) mγγ distribution in TAPS: black and
green lines are obtained pre and post cal-
ibration.

Figure 5.11: Example of the spectra used to perform the calibration of TAPS
LG ADCs gain. (a) The BaF2 element is plotted versus the invariant mass mγγ

calculated for every pair of neutral cluster in TAPS and in TAPS+CB. (b) The
invariant mass distribution is projected for each TAPS element, and the resulting
distribution is fitted with the sum of a Gaussian and a polynomial function, to
get the new gain correction. (c) The calibration procedure is iterated multiple
times to get the final results.
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(b) Projection for a given rPSA range.

Figure 5.12: Example of the spectra used to calibrate the TAPS SG ADCs gains.
(a) The PSA radius is plotted versus the PSA angle, defined in Eqs. (5.11)
and (5.12), respectively. (b) The PSA angle distribution is projected for dif-
ferent ranges of the PSA radius. The right peak of the obtained distribution is
fitted and the ADC gain is adjusted to center the peak at 45◦.

by computing the PSA radius (rPSA) and the PSA angle (ϑPSA), respectively as

rPSA =
√
E2

SG + E2
LG, (5.11)

and
ϑPSA = tan−1

(
ESG

ELG

)
. (5.12)

The rPSA is then plotted versus ϑPSA, giving the spectra in Fig. 5.12a. Since
photons have a fast energy deposition, their SG and LG components are very
close. Therefore, for photons, ϑPSA should be 45◦, especially at higher energies.
On the other hand, for low energetic hadrons ϑPSA should clearly deviate from
this value. To calibrate the SG ADCs gain, such a plot is created for every single
element. A projection of this plot on the x-axis is done, giving a characteristic
two peaks distribution showed in Fig. 5.12b. The right hand peak is fitted and
the ADC gain is adjusted to center this peak at 45◦.

5.2.3.3 Veto time calibration

The VETO TDCs gain is fixed to 0.05 ns/channel [23]. The offset is calibrated
in the same way as it is done for all the other detectors. The difference in time
between two elements is plotted as a function of the element number (Fig. 5.13a),
a projection for each element is created and the resulting distribution is fitted
(Fig. 5.13b). The offsets are adjusted to set such a difference to zero (Fig. 5.13c).



5.2. Calibration 109

50− 40− 30− 20− 10− 0 10 20 30 40 50
Veto time [ns]

0

50

100

150

200

250

300

350

V
et

o 
el

em
en

t

1

10

210

310

410

510

(a) 2-D distribution.
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(b) Single element fit.
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(c) VETO time distributions: black and
green lines are obtained pre and post cal-
ibration.

Figure 5.13: Example of the spectra used to perform the calibration of VETO
TDCs offset. (a) The VETO element is plotted versus the difference in time of
two neutral hits. (b) The time distribution is projected for each VETO element,
and the resulting distribution is fitted with a Gaussian function, to get the new
offset. (c) The calibration procedure is iterated multiple times to get the final
results.
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5.2.3.4 Veto energy calibration

The VETOADCs gain is calibrated in the same way as described in Section 5.2.2.2
for the PID. The idea again is to compare the ∆E/E from the data and from the
Monte Carlo simulation, and to adjust the gains to match the former with the
latter.

5.2.3.5 Veto correlation check

To correctly tag a cluster in TAPS as charged (or neutral), it is important to check
that each VETO paddle is correctly linked to the corresponding BaF2 to which it
is placed in front of. This can be easily done by plotting the BaF2 element versus
the VETO hit for each charged cluster. If the two elements are correctly linked
in the configuration file, there should be a one-to-one correspondence. If this is
not the case, CaLib automatically corrects the links in the configuration file.

5.2.4 Tagger

The tagging spectrometer, in the configuration used for this experiment, is com-
posed of 328 channels. Each channel is read by a TDC, while the energy in-
formation is determined based on the position of each channel, as explained in
Section 4.3.1. The energy calibration depends on the electron beam energy and
on the magnetic field and it is normally calculated for each beamtime using a
simple software called “ugcal”. Nevertheless, as already stated, this was the first
experiment after a major upgrade of the tagger and the old “ugcal” was not valid
anymore. For this reason, a huge effort was made inside the A2 Collaboration
to create an updated version of this software, using a complicated calibration
procedure similar to the one described in Section 6 of Ref [103].

5.2.4.1 Tagger time calibration

As already mentioned before, the CATCH TDCs gain is fixed at 0.117 ns/channel.
The only parameter that needs to be adjusted is the offset. As for the other
detectors, the idea is to align to zero the time difference between hits, in order to
have the same time information regardless of which element detected the electron.
Since each electron is detected by one single element, the difference in time is
calculated using neutral hit in TAPS as a reference. This is a natural choice
since TAPS has a better timing resolution compared to CB. The time difference
between a hit in the tagger and a neutral hit in TAPS is plotted as function
of the tagger channel, creating the 2-D spectra showed in Fig. 5.14a. For each
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(b) Single channel fit.
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(c) Tagger time distributions: black and
green lines are obtained pre and post cal-
ibration.

Figure 5.14: Example of the spectra used to perform the calibration of tagger
TDCs offset. (a) The tagger channel is plotted versus the difference in time
between the hit in the tagger and a hit in TAPS. (b) The time distribution is
projected for each tagger channel, and the resulting distribution is fitted with
a Gaussian function, to get the new offset. (c) The calibration procedure was
iterated multiple times to get a precise calibration.
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(a) mγγ distribution without any shift.
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(b) mγγ distribution with a −8.0 mm
shift.

80 100 120 140 160 180 200
 invariant mass [MeV]γ2

10−

8−

6−

4−

2−

0

2

4

6

8

10

ta
rg

et
 p

os
iti

on
 [c

m
]

410

510

610

(c) 2-D distribution.
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(d) Fit of σmγγ versus the vertex shift.

Figure 5.15: Example of the spectra used to calibrate the target position along the
z-axis. (a) and (b) show the 2γ invariant mass distribution calculated assuming
two different offset of the target position with respect the CB. (c) The 2γ invariant
mass is plotted as a function of the shift in target position. The invariant mass
distribution is projected for different shift values and the resulting plot is fitted to
get the width of the distribution. The minimum in the width distribution gives
the real shift in the position of the target respect to the CB.

element, a projection on the x-axis in produced, and the resulting distribution
is fitted using a Gaussian function, as showed in Fig. 5.14b. The offset is then
adjusted to center this time difference to zero, as visible in Fig. 5.14c. In this
particular spectrum, the importance of these calibrations is clear. It can be seen
how, before the calibration (black curve), the time distribution had an additional
peak at −3 ns. Without a proper correction, this would have caused the loss of
the ∼ 30− 40% of the prompt events.

5.2.5 Target position

The position of the target with respect to the Crystal Ball can vary from data
taking period to data taking period, in particular along the z-axis. In fact,
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between each experiment, the experimental apparatus can be moved to change
the target or to perform maintenance operations. It is therefore important to
check the target position before the starting of an experiment. This is done
during the first day of data taking using the MWPCs. By selecting events with
two charged tracks that released signal in both wire chambers, it is possible to
reconstruct the event vertex with a good resolution. This allows for a precise
check of the position of the target in respect to the apparatus. If the center
of the target is considerably off (& 0.5 cm) compared to the center of CB, the
apparatus can be moved to re-aligned everything.

A similar check can be performed also using CaLib. In this case, the position
of the target in respect to CB is checked using the invariant mass mγγ. In this
procedure, the invariant mass of each couple of neutral clusters mγγ is calculated
by shifting the vertex position, and the result is plotted as function of the altered
position used. This produces the 2-D histogram showed in Fig. 5.15c. A projec-
tion of the mγγ distribution for each shift in the vertex position is created and the
resulting spectra is fitted using a Gaussian function. The effect on the mγγ value
of a shift in the vertex position is clearly visible in Figs. 5.15a and 5.15b: the lat-
ter plot is obtained by shifting the vertex by 8.0 mm on the z-axis in the negative
direction, while the former is obtained without any shift. The sigma σmγγ result-
ing from the Gaussian fit is plotted as function of the vertex position, and the
minimum of the distribution corresponds to the actual target position, as showed
in Fig. 5.15d. The resulting value can be used in the Monte Carlo simulation to
adjust the center position of the target. The minimum of the σmγγ distribution
resulted to be very close to 0, as indicated by the blue line in Fig. 5.15d. This
confirms the good alignment done at the beginning of the data taking period
using the MWPCs.





Chapter 6

Photon beam analysis

A precise knowledge of the number of photons that reach the target is crucial for
the measurement of a cross-section. The photon flux enters at the denominator
of the cross-section equation, as explained in Chapter 8, and so it directly affects
the final results. In a tagged photon facility, as the one used for this experiment,
this measurement is quite challenging since it depends both on the number of
electrons that interact in the radiator emitting a bremsstrahlung photon, and on
the number of such photons that pass the collimator. While the former number
can be easily measured by counting the number of electrons in the photon tagging
spectrometer, the latter needs dedicated measurements and a constant monitoring
since it depends on the beam conditions. Moreover, as discussed in Section 4.2,
the use of a linearly polarized photon beam — needed for the extraction of the
beam asymmetry Σ3, but also useful to increase the statistics — enhances the
number of photons that pass the collimator only in specific energy regions, making
it even more challenging to precisely estimate the total photon flux. In fact, a
relatively small change in the beam position can cause a not negligible change in
the instantaneous photon rate. The first half of this chapter will be devoted to
a detailed discussion of the analysis performed to ensure a precise measurement
of the photon flux. In the second part, the analysis used to extract the degree
of linear polarization will be presented. This information is needed to correctly
extract the beam asymmetry Σ3 from the data.

6.1 Photon flux

The photon flux, namely the number of photons reaching the target, can be
calculated as the number of detected electrons in the tagger spectrometer scaled

115
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with the probability of a photon to pass the collimator, know as tagging efficiency:

Φ(i) = Ne−(i)εtagg(i), (6.1)

where Φ(i) and εtagg(i) are the number of photons reaching the target that were
produced by electrons detected in the i-th tagger channel and their tagging effi-
ciency, respectively, and Ne−(i) is the total number of electrons detected in that
given tagger channel. Ideally, the tagging efficiency should be constant over time
and, in the case of an unpolarized photon beam, it should not depend on the
tagger channel where the electron is detected, or in other words it should not be
photon energy dependent. In the case of a polarized photon beam, as already
mentioned, εtagg is strongly energy dependent and it becomes very sensitive to
small variation in the beam quality and position. For this reason, it is very im-
portant to keep the tagging efficiency monitored during the whole experiment.
This was done in two ways: once per day with dedicated measurements using the
lead glass detector, and constantly using a pair spectrometer. The two methods
are complementary: the former is more precise but it accounts for changes only
every 24 hours, the latter is less precise but it provides for a real-time measure-
ment of the tagging efficiency. A combination of these two methods would allow
for an extremely precise photon flux calculation. Nevertheless, as shown in the
next paragraphs, a precise analysis of the pair spectrometer data was unfortu-
nately not possible. To try to remedy for this and to improve the analysis of the
lead glass data, a new method was implemented and used. Thanks to it, it was
possible to carefully control the systematic errors on the flux normalization.

6.1.1 Tagging efficiency evaluation

6.1.1.1 Lead glass

A precise measurement of the tagging efficiency was done daily using the lead
glass detector (see Section 4.3.3.5). During these measurements, this extremely
efficient detector is placed in the beamline behind TAPS and the electron beam
current is reduced so that only a rate of 105 photons per second is recorded
by it. A 30 minutes tagging efficiency run was collected for each orientation of
the diamond radiator (parallel and perpendicular), as well as for the amorphous
radiator. Moreover, at the beginning and at the end of each tagging efficiency set,
a background measurement without the beam was also performed. With the old
tagger spectrometer, the contribution of the background was almost negligible
and constant in time. So, the tagging efficiency for the i-th channel given in
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Figure 6.1: Sample of the scalers distribution of two different background mea-
surements taken immediately (brick circles) and two hours after (green squares)
the beam was stopped.

Eq. (6.1) was simply calculated as:

εtagg(i) =
NPbG(i)

Ne−(i)− 0.5(t1N
bkg1
e− + t2N

bkg2
e− )

, (6.2)

where NPbG(i) is the number of electrons detected in the i-th tagger channel with
an associated trigger in the lead glass, Ne−(i) is the number of electron registered
in the scalers for that given channel, N bkg1

e− and N bkg2
e− are the number of elec-

trons registered in the scalers in the initial and final background measurement,
respectively. The two factors t1 and t2 account for the different duration of the
background runs and they are defined as the ratio between the time duration
of the run with beam and the time duration of the first and second background
run, respectively. This equation works fine in the case of time independent back-
ground, where one can assume that an average of the background before and
after the run is a good estimate of the background contamination during the ac-
tual measurement with the beam. Unfortunately, this is not true anymore with
the new tagger spectrometer. In fact, in the scaler distribution from the first
background measurement shown in Fig. 6.1 (brick circles), one can clearly see a
nonuniform distribution that looks like the sample with beam shown in Fig. 4.8.
Moreover, a repetition of the background measurement after two hours with-
out beam shows a completely different scalers distribution, as shown in green in
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Fig. 6.1, where in the same time span almost 20 times less electrons were collected.
This strong time dependency of the scalers background indicates some activation
inside the tagger, most likely in the aluminum structure surrounding each mod-
ule. In this situation, a simple average of the two background measurements as
in Eq. (6.2) would underestimate the background in the first measurement of the
set and overestimate it in the last one. To correct for this issue, a new method
for the subtraction of the background in the tagging efficiency calculation was
implemented in GoAT.

The idea behind this method is to find the function fi(t) that describes the
background rate in the i-th tagger channel at a given time t. Since most of this
background comes from the activation of parts of the tagger, one can assume
that:

fi(t) = bi + aie
−∆it, (6.3)

where ∆i is the decay constant, and ai and bi are two factors. Due to the ho-
mogeneity in the tagger structure, the decay constant can be safely assumed to
be the same for every tagger channel ∆i ≡ ∆. To determine it, the background
rate averaged over tagger channels was plotted as function of the time passed
after the starting of the first background measurement, and this distribution was
fitted using the function in Eq. (6.3). The result is visible in Fig. 6.2a. To de-
termine the two factors ai and bi, the same distribution was calculated using the
background rate in each tagger channel, and the same fit was repeated with the
decay constant ∆ fixed to the value found in the fit to the averaged distribution
(examples for two different tagger channels are reported in Figs. 6.2b and 6.2c).
This allows for a precise calculation of the background rate in the i-th channel
at any given time t′. In particular, the tagging efficiency can be now calculated
correctly for every scaler read sr as:

εtagg(i, sr) =
NPbG(i, sr)

Ne−(i, sr)−N bkg
e− (i, sr)

. (6.4)

During a tagging efficiency measurement a scaler read occurs every 2 s, so this
method can really correct for any time-dependency of the background rate. The
final tagging efficiency is the averaged value over all the scaler reads. Figure 6.3
shows a comparison between a tagging efficiency calculated using the old and
the new method. In Fig. 6.4 a typical set of tagging efficiency is shown: blue
and red are the tagging efficiency for the parallel and perpendicular orientation
of the diamond radiator, black is the tagging efficiency for the amorphous one.
The last one is almost constant around 34%, while for the diamond radiator the
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Figure 6.2: Background rate distributions as a function of time after the beam
was stopped. (a) Averaged rate over all the tagger channel. The fit is used to
determine the decay constant ∆, which is then used in the fit of the single channel
distributions. (b) and (c) represent the typical distribution for two different
tagger channels at low and high photon energy, respectively. In all the three
distributions, the strong exponential decrease of the background in time is clearly
visible.
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Figure 6.3: Comparison of the same amorphous tagging efficiency run analyzed
using the two different methods for the scalers background subtraction. The green
tagging efficiency obtained using the “standard” method (Eq. (6.2)) is constantly
higher than the magenta one obtained using the new method (Eq. (6.4)).

enhancement due to the coherent peak is clearly visible around 140 MeV.

6.1.1.2 Pair spectrometer

In addition to the daily measurements using the lead glass, it is also possible to
have a constant monitoring of the tagging efficiency using the pair spectrometer.
Since it is placed behind the collimator in the experimental apparatus (see Sec-
tion 4.3.3.6), it measures only the beam that is actually impinging on the target.
The tagging efficiency using the pair spectrometer can be calculated as:

εPS
tagg(i) =

NPS
prt (i)−NPS

rnd(i)

Ne−(i)

1

εPS(i)
, (6.5)

where NPS
prt (i) and NPS

rnd(i) are the number of hits in the i-th tagger channel with
an associated trigger in the pair spectrometer that can be correlated (prompt) or
uncorrelated (random) in time, respectively, and Ne−(i) is the number of electrons
registered in the tagger scaler for that given channel. εPS(i) is the intrinsic pair
spectrometer efficiency and it depends on the thickness of the scattering foil and
on the incoming photon energy, hence its tagger channel dependency.

The intrinsic pair spectrometer efficiency εPS of Eq. (6.5) can ideally be cal-
culated. It depends on the thickness of the scattering foil, the energy dependent
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Figure 6.4: Example of a typical tagging efficiency set. Blue circles and red
squares are the polarized tagging efficiencies as functions of the photon energy
for the parallel and the perpendicular orientation of the diamond radiator, respec-
tively. The unpolarized tagging efficiency obtained using the amorphous radiator
is shown in magenta triangles.

cross-section for e+e− pair production, the dimension and the detection efficiency
of the detector as well as on the magnetic field of the bending magnet. The first
two parameters give the pair conversion rate R(ωγ) at the scattering foil as

R(ωγ) = 1− Φ(x)

Φ0

= 1− exp [−µ(ωγ)x] , (6.6)

where x is the thickness of the scattering foil, Φ0 and Φ(x) are the incident and
the outgoing photon flux, respectively. The attenuation coefficient µ(ωγ) is given
by:

µ(ωγ) = σe+e−(ωγ)
ρNA

A
, (6.7)

where σe+e−(ωγ) is the e+e− photoproduction cross-section, NA is the Avogadro
constant, ρ and A are the density and the atomic mass of the scattering foil
(molybdenum in this case). Unfortunately, the detector parameters — such as
efficiency and magnetic field map — depend on many variables and cannot be
calculated precisely in an easy way. Therefore, the intrinsic pair spectrometer
efficiency was determined experimentally, exploiting the fact that the tagging
efficiencies obtained with the lead glass detector and the pair spectrometer should
be exactly equal for the same tagging efficiency run. Imposing εPS

tagg(i) = εtagg(i),



122 6. Photon beam analysis

 [MeV],labγω
100 200 300 400 500 600 700

P
S

 in
tr

in
si

c 
ef

fic
ie

nc
y

0

0.2

0.4

0.6

0.8

1

1.2

1.4
3−10×

Figure 6.5: Average intrinsic pair spectrometer efficiency as function of the photon
energy.

since the denominator is the same for both the tagging efficiency method, one
can easily find the relation:

εPS(i) =
NPS

prt (i)−NPS
rnd(i)

NPbG(i)

1

εtagg(1)
. (6.8)

Equation (6.8) could ideally be used to calculate the intrinsic pair spectrometer
efficiency for each tagging efficiency run. Nevertheless, the scattering foil of the
pair spectrometer was chosen as thin as possible, in order to not interfere with
the photon beam, and during the tagging efficiency measurement the photon flux
is kept very low in order to avoid pile up in the lead glass and to have a 100%

efficiency in photon detection. The combination of these two factors causes the
rate in the pair spectrometer to be extremely low, so to maximize the precision
of the intrinsic pair spectrometer efficiency all the tagging efficiency runs were
summed together and one single averaged value ε̄PS(i) was obtained per each
tagger channel. The results are reported in Fig. 6.5 as a function of the photon
energy. This approximation is valid under the reasonable assumption that the
intrinsic pair spectrometer efficiency does not depend on the radiator used and it
is constant over time for the duration of the beamtime.

The averaged intrinsic efficiency ε̄PS(i) was then used to extract the pair
spectrometer tagging efficiency for each data production run. An example of
three pair spectrometer tagging efficiencies, one for each different radiator setting,



6.1. Photon flux 123

 [MeV],labγω
100 200 300 400 500 600 700

P
S

 ta
gg

in
g 

ef
fic

ie
nc

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Diamond - parallel

Diamond - perpendicular

Copper - amorphous

Figure 6.6: Example of three typical tagging efficiencies extracted from normal
data runs using the pair spectrometer. Blue circles and red squares are extracted
from two diamond runs with parallel and the perpendicular orientation, respec-
tively. The magenta triangles show an amorphous tagging efficiency extracted
from a run with the copper radiator.

can be seen in Fig. 6.6. Ideally, these tagging efficiencies could be directly used
in Eq. (6.1) to calculate the photon flux run-by-run. Unfortunately this would
lead to an imprecise result due to the poor statistics of these tagging efficiency
measurements. Instead, the information from the pair spectrometer and the lead
glass could be combined to get the best photon flux estimation possible.

6.1.2 Photon flux correction

The pair spectrometer tagging efficiency distributions in Fig. 6.6 fluctuate too
much to be directly applied to the data. By comparing them with the lead
glass tagging efficiencies in Fig. 6.4, it is clear that especially at high energy the
pair spectrometer results are not fully reliable. This is probably due to a not
perfect hardware timing coincidence between the tagger spectrometer and the
pair spectrometer. For this reason, for the current analysis only the lead glass
tagging efficiencies were used.

Figure 6.7 shows all the different lead glass tagging efficiencies — from now
on, unless otherwise specified, all the tagging efficiencies have to be intended as
measured with the lead glass. The nice agreement among the different sets is an
indication of the excellent beam stability throughout the experiment, nevertheless
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(a) March 2018 beamtime, diamond
radiator with parallel orientation.
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(b) July 2018 beamtime, diamond
radiator with parallel orientation.
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(c) March 2018 beamtime, diamond
radiator with perpendicular orientation.
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(d) July 2018 beamtime, diamond
radiator with perpendicular orientation.
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(e) March 2018 beamtime, amorphous
radiator.
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(f) July 2018 beamtime, amorphous
radiator.

Figure 6.7: All the tagging efficiencies collected for this experiment in the March
and in the July data taking period on the left and on the right, respectively.
They are plotted separately for the three different radiator settings: (a) and
(b) diamond in the parallel orientation, (c) and (d) diamond in perpendicular
orientation, (e) and (f) copper radiator. Different colors correspond to different
tagging efficiency sets. In the small canvas, the energy region around the coherent
peak, that is also the one of interest for this analysis, is shown.
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a ∼ 2% absolute variation is still visible in the peak region. This is a normal fluc-
tuation that can occur during a long experiment, and it is important to select for
each production run the tagging efficiency that best represents the flux situation
at that moment. In the analyses of the A2 Collaboration, the standard procedure
is to select for each production run the tagging efficiency set right after in time.
This is a valid approach since a beam optimization is generally performed once
per day after the tagging efficiency measurement and, if the beam turns out in
a slightly different position after the optimization, the tagging efficiency can be
affected by it. On the other hand, it could happen that a second beam opti-
mization was required or that the beam slightly drifted by itself during the day.
These changes can affect the tagging efficiency and so the next measurement in
time will no longer be the best choice. To correct for this, an improved method
was implemented for this analysis, based on the fact that the best choice for each
production run is the tagging efficiency with the same, or closest, tagger scaler
distribution. This is particularly true for the linearly polarized data, where a
small shift in the beam, and so in the coherent edge position, can cause a big
shift in the tagging efficiency, and so in the photon flux.

The procedure to find the tagging efficiency set that best represent each pro-
duction run can be described step-by-step as:

• for each diamond tagging efficiency run, the enhancement in the tagger
scaler distribution due to the linear polarization is fitted to find the exact
position of the coherent edge. This procedure is described in Section 6.2;

• this fit is done every 100 scaler reads, giving about 8 edge positions per
run. The weighted average of these edge positions gives the final coherent
edge position for each tagging efficiency run;

• a similar analysis is performed for the data taking runs;

• for each production run, the tagging efficiency(ies) with the same coherent
edge position (±0.5 MeV) is (are) selected. If more than one matching
tagging efficiency is found, the closest one in time is selected, and the tagger
scalers for that specific production run are corrected using Eq. (6.1);

• if no matching tagging efficiencies are found, this happens for the ∼ 5% of
the runs, the tagging efficiency next in time is used, as for the standard
procedure.

This method has the drawback of not taking into account possible changes in
the magnitude of the tagging efficiency during the beamtime. In fact, it selects the
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best tagging efficiency set for each production run just based on the coherent edge
position. The best way to correct for this would be to use the pair spectrometer
information. It would allow for finding an overall scaling factor to adjust the
magnitude of the chosen tagging efficiency set to the one at the moment when
the data production run was taken. The scaling factor can be simply defined as

S =
ε̄PS
tagg(k)

ε̄seltagg

, (6.9)

where ε̄PS
tagg(k) is the average over all the tagger channels of the pair spectrometer

tagging efficiency for the k-th production run, and ε̄seltagg is the average over all the
tagger channels of the lead glass tagging efficiency for the selected set. Unfortu-
nately, as it can be seen in Fig. 6.8, this scaling factor seems to be systematically
lower than 1, meaning that the pair spectrometer tagging efficiency is systemati-
cally smaller than the selected tagging efficiency. A possible explanation could be
that the real intrinsic pair spectrometer efficiency εPS(i) (defined in Eq. (6.8)) is
lower than what we extracted. We calculated it using the tagging efficiency runs
as the ratio between the pair spectrometer and the lead glass signals, so with an
extremely low beam intensity. On the other hand, during the data taking a high
intensity photon beam was used to maximize the statistics, and it is possible than
the pair spectrometer efficiency is intensity dependent. Since it was not possible
to model this dependency, and to find an intensity-dependent correction factor
for the intrinsic pair spectrometer efficiency, this scaling factor was not applied
for the rest of the analysis. A systematic study of this new method together with
a comparison with the standard method can be found in Section 8.1.2.

6.2 Determination of the photon linear polar-
ization

The linearly polarized photon beam used in this experiment was produced via
coherent bremsstrahlung on the diamond radiator as explained in detail in Sec-
tion 4.2. Two different polarization settings were used — parallel (para) and
perpendicular (perp) — whose polarization planes are separated by 90◦. The
degree of linear polarization, essential to extract the beam asymmetry Σ3, is a
complex function of photon energy and crystal structure and it can be extracted
from data. For this analysis, a fitting routine described in Ref. [133] was used for
this purpose.
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Figure 6.8: Distribution of the pair spectrometer scaling factor to correct the
tagging efficiency magnitude for a sample of the total dataset obtained with the
two orientations of the diamond radiator.
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Figure 6.9: Fit of the enhancement together with the pseudo-χ2 distribution as
function of the scaling factor. The red dotted line indicates the scaling factor
corresponding to the minimum pseudo-χ2.



128 6. Photon beam analysis

The degree of linear polarization was determined once per day using the tag-
ging efficiency measurement described in Section 6.1.1.1. For each tagging effi-
ciency set, an enhancement R can be calculated for both the parallel and the
perpendicular polarization setting as:

R(i) =
N

para(perp)
e− (i)

Namo
e− (i)

, (6.10)

where Npara(perp)
e− (i) and Namo

e− (i) are the number of electrons registered in the
tagger scaler for the i-th channel using the diamond parallel (perpendicular) con-
figuration and the copper radiator, respectively. An example of the enhancement
distribution can be found in Fig. 4.6. The shape of the enhancement distribution
is directly related to the position of the coherent edge xd introduced in Eq. (4.15),
which is strongly sensitive to small variation in how the beam hits the diamond
lattice structure. For this reason, the enhancement distribution can slightly vary
from tagging efficiency to tagging efficiency.

Each enhancement distribution is then fitted using the fitting routine. It at-
tempts to model the coherent contribution from the two primary reciprocal lattice
vectors — [022] and [044] introduced in Section 4.2.3 — using some experimental
parameters, such as incident electron beam energy, collimator diameter as well
as its distance to the radiator, as fixed input. The enhancement distribution is
then normalized to 1 in an energy region where there should be no contribution
from the coherent part, and it is finally fitted using a MINUIT minimization
function. A Gaussian smearing accounts for the parameters which cannot be eas-
ily measured, such as beam divergency and multiple scattering in the radiator.
The parameters of the smear are determined by the fit to the data. This fit is
repeated 20 times by slightly changing the overall scaling of the enhancement
distribution, and the results of the fit with the best χ2 are saved. This accounts
for an imperfect normalization of the enhancement distribution and helps to keep
the systematic errors as low as possible. An example of a fit to the coherent
enhancement distribution obtained from a tagging efficiency run and the χ2 dis-
tribution as function of the scaling factor, are reported in Fig. 6.9. A complete
description of this method can be found in Ref. [133].

Using the output parameters from the fit, it is possible to determine the
degree of linear polarization (see Eq. (4.19)). It is important to note that the
degree of linear polarization distribution is dependent on the position of the
coherent edge. Nevertheless, once an enhancement is fitted the degree of linear
polarization can be calculated for any given coherent edge position. Figure 6.10a



6.2. Determination of the photon linear polarization 129

40 60 80 100 120 140 160 180
 [MeV],labγω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Li

ne
ar

 p
ol

ar
iz

at
io

n 
de

gr
ee Edge at 139.7 MeV

Edge at 142.2 MeV

Edge at 144.2 MeV

(a) Same tagging efficiency, different edge
position.

40 60 80 100 120 140 160 180
 [MeV],labγω

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Li
ne

ar
 p

ol
ar

iz
at

io
n 

de
gr

ee Tagg Eff set 0

Tagg Eff set 7

Tagg Eff set 15

(b) Same edge position, different tagging
efficiencies.

Figure 6.10: Example of distributions of the degree of linear polarization for
different coherent edge positions and different tagging efficiency sets.

shows the degree of linear polarization as function of the photon energy for three
different positions of the coherent edge, using the same tagging efficiency set.
On the other hand, for a given fixed coherent edge position, the polarization
distribution is relatively independent of the tagging efficiency set used to produce
it, as shown in Fig. 6.10b. During the data taking, the coherent edge position
was conveniently set at 141 MeV. As already explained, it is sensitive to small
variations in how the beam hits the diamond radiator, and so it is normal that
the coherent edge position slightly varies during the beamtime. Figure 6.11 shows
the edge position distribution for about half of the full dataset for the parallel
and perpendicular runs, respectively. For a precise determination of the degree
of linear polarization, during the analysis the enhancement distribution is fitted
every 1000 events and the coherent edge position is determined. To create the
enhancement distribution using Eq. (6.10), the incoherent contribution has to
be known. For this reason, two 30 minutes runs with the copper radiator were
collected each day. For each polarized run, the amorphous run after in time was
used as incoherent normalization to create the enhancement for the determination
of the edge position, and this information was used for a precise calculation of
the degree of linear polarization using the fitting parameters extracted from the
tagging efficiency set after in time. This method allows for best control of possible
systematic errors in the extraction of the degree of linear polarization. Despite
this, different sources of error are still present, such as approximations in the
function used for modeling the enhancement and in the fit for the determination
of the coherent edge position, or errors due to the choice of the tagging efficiency
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Figure 6.11: Distribution of the coherent edge position for a sample of the total
dataset obtained with the two orientations of the diamond radiator.

sets used for the extraction of the fit parameters. For this reason, as intensively
studied in Ref. [97] and also confirmed by Ken Livingston [134], a systematic
uncertainty of 5% should be considered for the degree of linear polarization.



Chapter 7

Data analysis

This chapter is devoted to the analysis procedure performed to select the final
sample of events used for the extraction of the unpolarized proton Compton
scattering cross-section and the beam asymmetry Σ3. The analysis was performed
using some of the classes already present in GoAT together with a few additional
ones specifically written for this work.

In the first section, a short description of the beamtimes forming the data
sample used for this work is given. In the second section, the procedure for the
selection of Compton events is described with a particular focus on the missing
mass studies. The third section will be devoted to the subtraction of the contri-
bution from the empty target. In the last part, the Monte Carlo simulation used
to estimate the detection and reconstruction efficiency is discussed.

7.1 Datasets

The data used for this experiment were collected in two three-week beamtimes
in March and July 2018. The experimental conditions were kept identical in
both periods, in order to assure a one to one comparison between the results.
An unpolarized electron beam with a nominal energy of 883 MeV was provided
by MAMI with a beam current of 3 nA or 9 nA when using the diamond or
amorphous radiator, respectively. Even though it would be ideal to use a beam
current as high as the accelerator can deliver, this value has to be carefully chosen
as a compromise among many different factors: the performance of the DAQ, the
deadtime of the single CPUs, the time resolution of the detectors and of course the
need to collect as much data in the shortest time possible. Furthermore, the choice
of a different electron beam current based on the type of radiator used is due to
the differences in the Bremsstrahlung distribution between the unpolarized and

131
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Table 7.1: Overview of the data collected in the two different beamtimes used in
this dissertation.

Beamtime # runs hours radiator target

March 2018

409 240 Diamond Full
140 105 Diamond Empty
32 32 Copper Full
7 7 Copper Empty

July 2018

352 205 Diamond Full
135 100 Diamond Empty
20 20 Copper Full
7 7 Copper Empty

the polarized cases, as well as to the different tagging efficiencies. As previously
discussed (see Figs. 4.8 and 6.4), the use of a crystalline radiator can enhance
the number of produced photons, and their probability to pass the collimator.
For the same electron beam current, the photon flux at the target when using
an amorphous radiator is much lower compared to the diamond case. The two
values of electron beam current were chosen to result in similar trigger rates in
the CB. An overview of the data collected in the two beamtimes is reported in
Table 7.1.

Two additional beamtimes were completed for this experiment, but unfortu-
nately the data cannot be used due to major issues in the apparatus. A two-week
long beamtime was done in December 2017. This was the first data taking period
ever with the new tagging spectrometer and it was extremely useful to study
the new detector. On the other hand, almost half of the CB channels were not
triggering properly due to a problem in the front-end electronics. This is an issue
in particular for a Compton analysis, where the majority of the events have one
single cluster in the CB caused by the photon. When the photon ended up in
one of the non-triggering crystals, the event was completely lost. This is evident
when looking at the angular distribution of the single cluster events in the CB
in Fig. 7.1. The central spot without events are the non-triggering channels.
The relatively large number of the problematic channels makes it very difficult
to use this data for a precise measurement of an unpolarized cross-section, there-
fore it was decided to not include those data in this dissertation nor in the final
results. A shorter one-week beamtime was done in February 2018, after the trig-
gering problem was solved. Unfortunately, in this new data taking period there
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Figure 7.1: Sample of the angular
distribution in the CB of single clus-
ter events from the two-week beam-
time in December 2017. The hole
due to the non-triggering channel is
clearly visible in the central region.
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Figure 7.2: Example of tagging effi-
ciencies collected during the Febru-
ary 2018 beamtime. The disagree-
ment among the different runs is
clearly evident. In the small canvas,
the energy region around the coher-
ent peak, which is also the one of in-
terest for this analysis, is shown.

were issues with the tagger electronic modules during the tagging efficiency runs.
In particular, the integral of both scalers and TDC hits for some scaler reads
dropped to zero. This caused most of the tagging efficiencies from this beamtime
to be completely off, as visible in Fig. 7.2 if compared to the good data shown in
Fig. 6.7. As explained in Section 6.1, a reliable tagging efficiency is essential for
a correct calculation of the photon flux and therefore also for a precise measure-
ment of a cross-section. Considering also that this is just a small part of the full
data sample, it was decided not to include this data in the analysis nor in the
final results.

As reported in Table 7.1, the total data sample used for this thesis is composed
of 821 runs with full target and 287 with empty target, corresponding to more
than 700 hours of actual data taking. These data comprise more than 4.3 billions
events, that were analyzed to select just the Compton scattering ones in the
relevant kinematic region.

7.2 Event selection

The final goal of this experiment is to provide a high-precision Compton scattering
dataset best suited for the extraction of the two proton scalar polarizabilities αE1

and βM1 by measuring the unpolarized proton Compton scattering cross-section
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and the beam asymmetry Σ3. To select the desired reaction γ~p → γp and to
reduce the background as much as possible a strict event selection was applied.
The selection criteria applied are:

• one single neutral cluster in the CB in the final state;

• a time coincidence between the cluster in CB and the electron in the tagging
spectrometer ∆t = ±3 ns;

• an incoming beam energy ωγ = 86.3− 140.4 MeV;

• a Compton missing mass Mmiss = 920− 955 MeV.

These criteria were carefully studied using both data and Compton scattering
Monte Carlo simulations. The effects of small changes in any of them are discussed
in Sections 8.1 and 9.1.

7.2.1 Number of particles in the final state

Two particles are present in the final state of proton Compton scattering: one
charged, the recoil proton, and one neutral, the scattered photon. In the energy
region of interest for this work ωγ . 150, the recoil proton never has enough
momentum to exit the liquid H2 target, and therefore is not detectable in our
apparatus. Due to this, for this analysis only events with one neutral particle
were considered. A neutral particle is defined as a cluster in the CB without any
associated hits either in the PID or in the MWPCs. Figure 7.3 shows the distri-
bution of the number of reconstructed particles in a Compton scattering Monte
Carlo simulation. The vast majority of events (98%) have exactly one particle in
the final state, showing the validity of the applied selection. In an almost negligi-
ble amount of events (1.8%), there are more than one reconstructed tracks, and
this is probably due to a wrong cluster reconstruction, giving additional clusters
— mainly two — instead of a single one. Since these split Compton events are
difficult to disentangle from π0 decays, which result in two photons, it was not
possible to recover such events. Instead, it was decided to account for them in
the Monte Carlo efficiency correction (see Section 7.4).

7.2.2 Photon tagging

The incident photon energy ωγ is inferred from the energy Etagg of the electron de-
tected in the tagging spectrometer. This process is complicated by the relatively
high electron beam current, which results in an average of 140 electrons detected
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Figure 7.3: Number of reconstructed
Monte Carlo tracks per event. The
red dashed line indicates the selec-
tion used in the analysis.
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Figure 7.4: Example of the distribu-
tion of the number of prompt tagged
electrons per event. In most of the
events more than one prompt elec-
tron is registered, making it neces-
sary to perform a random timing
background subtraction.

within the same trigger window. For each selected event, the time difference ∆t

between each hit in the tagger and the neutral cluster in CB was calculated. A
typical time distribution, shown in Fig. 7.5, has a sharp peak around zero, known
as a “prompt peak”, on top of a flat background distribution. An electron was
considered linked to the event if the time difference ∆tp ∈ [−3, 3] ns, and these
events are known as “prompt” events. The energies of these electrons are used
to infer the energy of the incident photon. On the other hand, the prompt win-
dow also includes the background underneath the peak, which is associated with
random electrons. In particular, Fig. 7.4 shows that in most of the events more
than one prompt electron is found. To model this random contribution within
the prompt region and enable its subtraction, two random samples were defined:
one on the left ∆tr1 ∈ [−180,−80] ns and one on the right ∆tr2 ∈ [100, 500] ns
of the prompt peak. In Fig. 7.5, the prompt and random time regions are shown
in green and gray, respectively. It is important to note that the number of ran-
dom coincidences in the tagger spectrometer is higher in the first channels, the
ones associated with low electron energy. This is due to the typical shape of
the bremsstrahlung distribution. It is visible in the comparison between the two
time distributions shown in Fig. 7.6, representing the hits from the first and
the last tagger channel included in this analysis, respectively. In the latter the
prompt/random ratio is ∼ 0.70, while in the former it is ∼ 0.87.
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(b) Zoom around the prompt peak.

Figure 7.5: Sample of the time difference distribution between each hit in the
tagger and the scattered photons in the CB. In the left panel, the full time
interval registered by the tagger TDCs is shown. On the right, the distribution
is zoomed around the prompt peak. The random sample and the prompt peak
are shown in gray and green, respectively.
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(a) Time distribution for tagger ch. 14.
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(b) Time distribution for tagger ch. 28.

Figure 7.6: Example of the time distribution for the scattered photons using only
the first (left) and the last (right) tagger channels included in the analysis. The
differences in the prompt over background ratio is visible.
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7.2.3 Beam energy

As discussed in the theoretical introduction to this dissertation (see Section 2.1.2),
the Compton scattering cross-section starts to be sensitive to the proton inter-
nal structure, and so to the scalar polarizabilities, at an incoming photon energy
ωγ ∼ 60 MeV, and this sensitivity increases with the energy. Unfortunately, as
ωγ reaches the threshold for pion photoproduction, the spin polarizabilities start
to play a role in the description of Compton scattering, making it more diffi-
cult to disentangle the non-spin dependent contribution. On the other hand,
due to experimental constraints such as the high level of random coincidences in
the tagger spectrometer and the presence of an unknown source of low-energetic
background (explained later in Section 8.1.5), it was not possible to precisely
measure either the unpolarized cross-section or the beam asymmetry Σ3 at in-
coming photon energies ωγ < 85 MeV. For these reasons, despite the fact that
the tagger spectrometer can cover a photon energy range ωγ = 35.8−760.9 MeV,
a much smaller range ωγ = 86.3 − 140.4 MeV was used for this analysis. In this
incoming photon energy region, each tagger channel is ∼ 3.4 MeV wide giving a
total of 15 tagger channels in the selected energy range. These 15 channels were
equally divide in 5 energy bins: ωγ = 86.3 − 98.2 MeV, ωγ = 98.1 − 108.4 MeV,
ωγ = 108.5− 118.7 MeV, ωγ = 118.7− 130.2 MeV, and ωγ = 130.3− 140.4 MeV.

7.2.4 Missing mass

In Compton scattering, the initial state can be defined as the sum of the incident
photon’s and target proton’s four momenta k and q, respectively. The final state
can be similarly defined as the sum of the scattered photon’s and recoil proton’s
four momenta k′ and q′, respectively. Energy and momentum conservation for
the reaction requires

k + q = k′ + q′. (7.1)

The energy of the incoming photon ωγ is inferred using the tagging technique,
while the free protons of the target have negligible momenta and can be assumed
to be at rest. Therefore, the left term in Eq. (7.1) is fully determined. At these
energies, as already explained, it was not possible to detect the recoil proton
and so its four momentum cannot be measured. By defining it as “missing four-
momentum” q′ ≡ Pmiss, Eq. (7.1) can be rearranged as

Pmiss = k + q − k′. (7.2)
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(b) Events from the prompt peak after the subtrac-
tion of the random contribution.

Figure 7.7: Example of the missing mass distribution using events from the
prompt and random time windows in green and gray, respectively. The prompt
and random distributions are scaled accordingly to the size of the time windows
defined in Section 7.2.2. The Compton missing mass peak centered at the proton
mass is clearly visible. On the right, the missing mass distribution is shown after
subtracting the prompt and the random components. The red dotted lines show
the missing mass selection applied in the analysis. The additional background
contribution on the right of the distribution does not come from the liquid hy-
drogen inside the target and it is subtracted later in the analysis.
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Figure 7.8: Simulated Monte Carlo missing mass distribution as function of the
scattering angle θγ′ . The missing mass distribution peaks around the proton mass
value.

Consequently, a “missing mass” can be defined as Mmiss =

√
E2

miss − ~P 2
miss. If

the missing particle is the recoil proton, Mmiss should be equal to the proton
mass mp:

Mmiss =

√
(ωγ +mp − ωγ′)2 − (~k − ~k′)2 ≡ mp = 938.27 MeV. (7.3)

Due to the detector resolution, the experimental missing mass in real data is a
Gaussian distribution centered around the proton mass with a tail on the right
due to energy losses. The missing mass was calculated for both the prompt and
random events and two separate histogram were filled. An example of the missing
mass distribution for prompt and random events is shown in Fig. 7.7a in green and
gray, respectively. The prompt and random distributions were then subtracted
to get the missing mass distribution from only the events in the prompt peak.
An example of the subtracted distribution is shown in Fig. 7.7b.

In a two-body reaction, as Compton scattering is, the missing mass provides
a powerful variable for the optimization of the event selection and the conse-
quent reduction of the background events. To find the best cut to be applied to
the data to select the interesting events, the missing mass distribution on Monte
Carlo Compton scattering events was studied. As it is obvious, applying Eq. (7.3)
to generated Monte Carlo data would give a δ distribution peaked on the proton
mass. For this reason, the interactions of the generated data with the detector
apparatus of the A2 Collaboration were simulated using the A2Geant4 software
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Figure 7.9: Example of the fit to the simulated Monte Carlo missing mass distri-
bution for a given bin in ωγ and θγ′ . The double Gaussian fit function together
with the two separate contribution are shown in green, red and blue, respectively.
The vertical black line indicates the mean value µ̄i calculated using Eq. (7.6).

described in Section 5.1.4. The simulated data were then analyzed using Acqu-
Root and GoAT as for the real data, and the missing mass was calculated. An
example of the simulated missing mass distribution as a function of the scat-
tered angle θγ′ is reported in Fig. 7.8. This distribution was fitted using a double
Gaussian function, defined as:

f(x) = h
[
e−

1
2
(x−µ

σ
) + h′e−

1
2
(x−µ−µ′

σσ′ )
]
, (7.4)

for different bins in θγ′ . In Eq. (7.4), µ′, σ′ and h′ are the relative mean, width
and height of the second Gaussian with respect to the first one. The usage of
a double Gaussian function allows for a better fit of the tail on the right of the
distribution compared to a single Gaussian fit [23]. The fit was performed for
the 5 bins in photon beam energy and for 12 bins in the scattering angle range
θγ′ = 30◦ − 150◦, each 10◦ wide, yielding 60 bins in total. An example of a fitted
distribution can be seen in Fig. 7.9. For every fit a missing mass selection was
chosen according to:

µ̄i − 2.5σ̄i < Mmiss < µ̄i + 2.5σ̄i, (7.5)

with

µ̄i = µiw1,i + µ′
iw2,i (7.6)
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σ̄i = σiw1,i + σ′
iw2,i, (7.7)

where w1(2),i is the weight of the first (second) Gaussian for the i-th bin, and
i = 1, . . . , 60 runs over all the energy and angular bins. The weight is defined
as the integral of one of the two functions divided by the sum of the two. The
average values over all the bins of the lower and upper limits were calculated and
they were used for the selection of the Compton events in the analysis of the data.
The limit values used are: Mmin

miss = 920 MeV and Mmax
miss = 955 MeV. To make

sure that this selection is valid also in the analysis of the real data, the simulated
data were carefully calibrated to match the real one, as discussed in Section 7.4.

The missing mass is the main, if not the only, variable on which a cut can
reduce the background contamination inside the final Compton scattering sample.
While the selection of a narrow range to get a cleaner sample can be beneficial
for the measurement of the beam asymmetry Σ3, it is not a valid approach for
the unpolarized cross-section. For a precise measurement of this observable every
Compton scattering event should be included in the final sample. While this is
not realistic, it is crucial to minimize the possibility of rejecting good events. The
final missing mass limits used in the analysis are a compromise between these two
different approaches.

7.3 Empty target contribution

The liquid hydrogen used as a pure proton target for this experiment was con-
tained inside a cylindrical target cell made of Teflon, described in Section 4.3.2.
The target cell was also surrounded by layers of insulating material used to keep
the hydrogen at a temperature of 20 K. All this material produced an additional
contribution to the collected data other than the contribution of photon beam
interactions on the liquid hydrogen. Additional background could come from the
beam photons converting to e+e− pairs, as well as from the electron beam dump
and other background sources inside the experimental hall. All this unwanted
contribution needs to be subtracted out to isolate only the events coming from
the liquid hydrogen.

To sample this background, a bit more than one third of the run period was
devoted to collecting data using the empty target cell. During these runs, the
experimental conditions were set as similar as possible to their state during data
taking with a full target. This allows for a one to one comparison between the
background contributions in the samples collected using the full and the empty
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Figure 7.10: Example of missing mass distributions at three different scattering
angles. The left panels show the full and empty target sample distributions in blue
and red dots, respectively. The right panels show the empty target subtracted
distribution together with the simulated Monte Carlo one, respectively in black
and green. In all the panels, the red dashed lines show the selection applied in
the analysis.
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target cell. The empty target sample was analyzed using the same calibration
and event selection described previously. It was then scaled accordingly to the
photon beam flux and subtracted from the full target sample. Figure 7.10 shows
examples of missing mass distributions for different values of the scattering angles
θγ′ . Figures 7.10a, 7.10c and 7.10e show the full and empty target contributions
separately in red and blue, respectively. The empty target background contribu-
tion is relevant and definitely cannot be neglected. It is interesting to note that in
the forward region (Fig. 7.10a), the empty target sample seems to underestimate
the background contribution on the right of the missing mass peak. The source
of this additional background was intensively studied (see Section 8.1.5) without
coming to a definite conclusion. Nevertheless, these background events seem to
be generated by low energetic neutral particles and so they are excluded from the
final sample by the missing mass selection. This is visible in Figs. 7.10b, 7.10d
and 7.10f where the missing mass distributions after the empty target subtraction
are shown together with the simulated Monte Carlo distribution. The remaining
background is visible at Mmiss ∼ 990 MeV, well outside the accepted missing
mass range given by the two red dashed lines.

7.4 Detection and reconstruction efficiency

The determination of the Compton scattering detection and reconstruction effi-
ciency εrec is crucial for a correct measurement of the unpolarized cross-section. It
allows for an estimate of the fraction of events that went undetected or were lost
in the analysis process. εrec was calculated starting from a sample of 100 million
Monte Carlo generated Compton scattering events. These are simply randomly
generated four-momenta of particles in the initial and final state of Compton
scattering that were then used to simulate physical interactions within the A2
experimental apparatus, using the A2Geant4 software described in Section 5.1.4.
The simulated hits went through the same analysis procedure as the real data.
The detection and reconstruction efficiency εrec was calculated as

εrec(ωγ, θ
rec
γ′ ) =

Nrec(ωγ, θ
rec
γ′ )

Ngen(ωγ, θ
gen
γ′ )

, (7.8)

where Nrec(ωγ, θ
rec
γ′ ) and Ngen(ωγ, θ

gen
γ′ ) are the number of reconstructed and gen-

erated Compton scattering events, respectively. It is important to note that
the former is considered as a function of the reconstructed scattering angle θrecγ′ ,
while the latter is considered as a function of the generated scattering angle θgenγ′ .
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Figure 7.11: Simulated Monte Carlo 2-γ invariant mass distribution.

Due to the angular resolution of the experimental apparatus and of the cluster-
ing algorithm, these two values may be significantly different. The use of the
reconstructed angular information for the reconstructed events, instead of the
generated one, corrects for possible systematic shifts in the reconstruction of the
angular information, since it should affect both the simulated and the real data
in the same way.

For a precise estimate of the efficiency εrec, it is important that the simulated
data emulates the real data as accurately as possible. In this way, the selection
applied in the analysis affects the simulated and real data in the same way.
Particularly important is the energy smearing of the simulated data, which is
necessary to match the resolution of the experimental data For the NaI crystals
of CB, the energy resolution in GeV was given by:

∆ECB = 0.20 ∗ (ECB/GeV )0.7. (7.9)

Moreover, the simulated data were also calibrated using an overall scaling factor
to match the calibration of the real data. The calibration and the smearing of the
simulated data were checked using neutral pion photoproduction. Compared to
Compton scattering, it has two main advantages: a 100 times higher cross-section,
and the possibility to use the π0 invariant mass as an energy calibration check. A
Monte Carlo sample of γp → pπ0 events was generated and its interaction with
the experimental apparatus was simulated. For the pion analysis, the events with
exactly two neutral particles with energy ωγ′ < 150 MeV in the final state were
selected, both in the simulated and in the real data. This tight cut was chosen
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Figure 7.12: Example of 2-γ invariant mass distribution for a given θγ′ bin. The
simulated distribution in black is compared with the empty target subtracted dis-
tribution in blue. The nice agreement among the two distributions demonstrates
an appropriate Monte Carlo calibration and smearing.

to select photons as similar as possible to the ones used in the main Compton
analysis. The invariant mass of the two photons, mγγ, was plotted as a function
of the scattering angle θπ0 for both simulated and real data. The 2-D distribution
for the simulated data can be seen in Fig. 7.11. To check the goodness of the
energy smearing, the invariant mass distribution was projected in 10◦ wide θπ0

bin, and the simulated and real distributions were plotted together. An example
of these comparisons can be seen in Fig. 7.12. The agreement between the real
and the simulated distributions indicates an appropriate energy calibration and
smearing.

The final step towards ensuring that the simulated data imitates the real
data as accurately as possible is the exclusion of the broken CB channels from the
analysis. During the two data taking periods, a few of the 672 channels of the CB
were not working properly, either giving no output or a signal lower than expected.
It is important to account for these problematic channels in the simulation and
to include them in the efficiency calculation. Since it is not possible to precisely
simulate their level of inefficiency, these channels were completely excluded in
the analyses of both simulated and real data. Figure 7.13 shows the angular
distribution of simulated and real Compton events in CB in the left and right
panel, respectively. The spots with fewer events are related to the ten missing
channels reported in red. As it can be seen, the holes in the angular distribution
of real data are well represented in the simulated distribution.
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Figure 7.13: Angular distribution in the CB of simulated and real Compton
scattering events in the left and right panel, respectively. The red ellipses shows
the ten problematic CB channels.

After all these checks, the detection and reconstruction efficiency εrec was cal-
culated using Eq. (7.8). Figure 7.14 shows the distribution of εrec as a function
of the photon beam energy ωγ and the scattering angle θγ′ . Thanks to the ex-
perimental apparatus used being extremely suitable for the detection of photons,
the overall efficiency is relatively high, εrec ∼ 87%, and it shows a weak energy
and angular dependency. The drop in efficiency visible at θγ′ = 45◦ is caused by
the the missing CB channels reported in Fig. 7.13.
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Figure 7.14: Compton scattering detection and reconstruction efficiency as a
function of the photon beam energy ωγ and the scattering angle θγ′ . The drop in
efficiency visible at θγ′ = 45◦ is due the the missing channels in the CB reported
in Fig. 7.13.





Chapter 8

Determination of the unpolarized
cross-section

The cross-section of a physical reaction is a measure of the probability that that
specific process will take place. In the case of proton Compton scattering, the
cross-section is a measure of the probability that a photon will interact with a
proton and will be re-scattered at a given angle. It is expressed in units of area,
and in nuclear physics the conventional unit is barn b (1b = 10−28 m2). It is one
of the most useful measurable physical quantities and it can be accessed using
the experiment described in this dissertation.

In the case of an incoming photon beam with energy ωγ and flux Φγ impinging
on a proton target at rest with a given density ρLH2 and length lLH2 , the number
of Compton scattering events N can be defined as

N = σΦγNp, (8.1)

θγ'k

k'
ϕγ'

y
x

z

Figure 8.1: Scheme of the polar and azimuthal scattering angles θγ′ and φγ′ ,
respectively. The interaction point is shown in gray.
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where Np is the number of protons in the target, and the proportionality constant
σ is the cross-section. The photon flux Φγ can be calculated using Eq. (6.1), where
the dependency on the tagging spectrometer channel indicates a dependency on
the incoming photon beam energy ωγ. The number of protons per unit area in
the target can be calculated as:

Np =
NAρLH2lLH2

AH2

= 4.249× 1023 protons/cm2, (8.2)

where NA = 6.022×1023 mol−1 is the Avogadro constant, ρLH2 = (70.548±0.01)×
10−3 g/cm3 is the target density, lLH2 = (10.0± 0.1) cm is the target length, and
AH2 = 1.007 g/mol is the atomic weight of hydrogen [105]. Furthermore, to
extract the real cross-section from the measured one, it is important to account
for the reconstruction and detection efficiency εrec calculated in Section 7.4 and
depicted in Fig. 7.14. In particular, given a number of experimentally observed
Compton scattering events Nγ′ , the real number of events is higher than the
measured one, and it can be calculated as

N =
Nγ′

εrec
. (8.3)

Using Eqs. (6.1), (8.1) and (8.3), the energy dependent cross-section can be
calculated as

σ(ωγ) =
Nγ′(ωγ)

Ne−(ωγ)εtagg(ωγ)εrec(ωγ)Np

. (8.4)

More complete information can be obtained by studying the polar and az-
imuthal angular dependency of the cross-section. The two reaction angles are
shown in Fig. 8.1. Defining the solid angle dΩγ′ = sin θγ′dθγ′dφγ′ , the cross-
section as a function of the solid angle — usually called differential cross-section
— can be defined as

dσ

dΩ
(ωγ, θγ′ , φγ′) =

Nγ′(ωγ, θγ′ , φγ′)

dΩ

1

Ne−(ωγ)εtagg(ωγ)εrec(ωγ, θγ′ , φγ′)Np

. (8.5)

In the case of an unpolarized cross-section, the result is azimuthally symmetric,
therefore there is no dependency on φγ′ and the solid angle can be integrated over
the full azimuthal angle:

∆Ω =

∫ 2π

0

dφγ′

∫ θf
γ′

θi
γ′

sin θγ′dθγ′ = 2π(cos θiγ′ − cos θfγ′), (8.6)
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where θiγ′ and θfγ′ are the lower and upper limits of each bin in the scattering angle
θγ′ . The total cross-section σ(ωγ) can then be extracted from the differential one
by integrating over the angles

σ(ωγ) =

∫
dΩ

dσ(ωγ, θγ′ , φγ′)

dΩ
=

∫ 2π

0

dφγ′

∫ π

0

dθγ′ sin θγ′
dσ(ωγ, θγ′ , φγ′)

dΩ
. (8.7)

The unpolarized φ-independent Compton scattering cross-section measured
in this thesis is finally given by:

∆σ

∆Ω
(ωγ, θγ′) =

Nγ′(ωγ, θγ′)

2π(cos θiγ′ − cos θfγ′)

1

Ne−(ωγ)εtagg(ωγ)εrec(ωγ, θγ′)Np

. (8.8)

where Nγ′(ωγ, θγ′) is the number of observed Compton scattering events within a
given beam photon energy and scattering angle bin, with central values ωγ and
θγ′ , respectively.

8.1 Systematic studies

In addition to the statistical errors, the measurements of this thesis are also
affected by systematic uncertainties. They quantify the effects of the different
analysis steps, and they provide a measure of the robustness of the obtained re-
sults. Therefore, it is important to study all the sources of possible systematic
effects and to provide a clear estimate of them. The sources of systematic un-
certainties can be intrinsic to the experiment, such as the target density or the
photon flux, or can be dependent on the analysis procedure, such as the cuts on
the proton missing mass or on the number of particles in the final state. In this
section, all the possible sources of systematic errors are discussed and their effects
on the final unpolarized Compton scattering cross-section results are estimated.

To estimate the size of the systematic errors, changes to the different sources
are applied, and the effects of these changes on the final results are calculated.
In the following part of the text, the lower case δ and the upper case ∆ are used
to indicate a relative or an absolute error, respectively.

8.1.1 Target density

The number of protons per unit area in the target enters directly at the denom-
inator in the calculation of the unpolarized cross-section, as shown in Eq. (8.8).
This number is calculated using Eq. (8.2), where the sources of uncertainty are
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Figure 8.2: Sample of the photon beam flux distributions obtained with the (a)
parallel and (b) perpendicular orientation of the diamond. The three colors corre-
spond to three different methods used to select the tagging efficiency measurement
to be used to correct the photon flux for each production run. The red points
correspond to the “edge” method, the one used for the final results. Blue and
green points correspond to the “close” and “average” method, respectively, that
were used for the estimation of the systematic uncertainty. In the small canvas,
the beam energy region of interest for this analysis is shown, and the dashed lines
show the cuts applied in the analysis.

the target length lLH2 and the target density ρLH2 . During the measurement,
the temperature of the target was kept stable and so the target density value is
known with a negligible error (< 0.1%). On the other hand, the target length is
known with an error of 1% that should be taken into account in the final results.

8.1.2 Photon flux

The main source of systematic error in the determination of the photon flux
is the tagging efficiency measurement. It was performed daily using the lead
glass detector that is assumed to have a 100% efficiency for photon detection.
The same tagging efficiency measurement is normally used in the analysis to
calculate the photon flux in all the runs collected in the preceding 24 hours. This
approach is mostly valid in the case of an unpolarized photon beam, while with a
linearly polarized beam it does not account for possible variations in the position
of the linear polarization edge from run to run. To partially compensate for this
issue, a different approach was used in the analysis of this thesis, as described in
Section 6.1.2. This method tries to find the tagging efficiency closest in shape to
the tagger scaler distribution of each data taking run, independent on when it was
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taken. The selection is based on the coherent edge position, and if more than one
tagging efficiency with the same coherent edge position is found, the one closest in
time to the production run is selected. To study the validity of this new method,
as well as to estimate the systematic error in the tagging efficiency measurement,
a sample of the total photon flux was calculated using three different methods:

• “edge” method, the one used in this analysis to calculate the photon flux
for each production run (described in Section 6.1.2);

• “average” method, in which the weighted average ε̄tagg(i) over all the tagging
efficiency sets was calculated for the i-th channel as

ε̄tagg(i) =

n∑
s=1

εtagg(i, s)w(i, s)

n∑
s=1

w(i, s)
, (8.9)

where εtagg(i, s) and w = 1/∆ε(i, s) are the tagging efficiency measurement
and the weight — given by the reciprocal of the variance — for the s-th
set, respectively. ε̄tagg(i) was used to calculate the photon flux for every
production run;

• “close” method, in which the tagging efficiency measurement next in time
was used to calculate the photon flux for each production run.

Figure 8.2 shows a sample of the photon flux separately for the parallel and per-
pendicular dataset calculated using the three methods. The differences between
the three methods are extremely small. To get a better estimate of the differ-
ences, the ratios between the outcome of the three different methods are shown
in Fig. 8.3. As expected, the three methods give very similar results and inside
the cuts applied in the analysis the difference between any two of them is never
larger than 1.5%. A stronger difference is visible right after the selected region,
where the coherent edge sits. This was expected since the tagging efficiency drops
after the coherent edge, as visible in Fig. 6.4. Therefore, in that region a small
oscillation of the beam can cause a significant change in the flux. This is the
main reason why the coherent edge was set to be outside the beam energy cuts.

It is also interesting to note that the photon flux obtained with the “edge”
method seems to be less in agreement with the other two. This highlights the fact
that the coherent edge position can noticeably shift between runs and this is not
perfectly represented by the tagging efficiency measurements performed closest in
time. Fig. 8.4 shows a sample of the coherent edge positions for tagging efficiency
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Figure 8.3: Ratio between the photon beam flux distributions shown in Fig. 8.2.
The red points show the ratio between the photon flux obtained using the “edge”
and the “close” methods. The blue points show the ratio between the photon flux
obtained using the “edge” and the “average” methods. The green points show
the ratio between the photon flux obtained using the “average” and the “close”
methods. The beam energy range is zoomed in on the region of interest for this
analysis, and the dashed lines show the cuts applied.

and production runs. As can be seen, the two distributions have different shapes
and this may indicate that it is more correct to select the tagging efficiency based
on the shape, as it was done in the analysis of this thesis.

Since it was not possible to clearly determine which method was more correct,
a systematic error in the order of 2% was determined based on the maximum
difference between the results obtained using the different methods.

8.1.3 Analysis cuts

The different cuts applied in the selection of the final data sample have a strong
influence on the quality of the final results. Variations in the strength of these
conditions can be used to prove the reliability of the final results, as well as to get
an estimate of the systematic uncertainties coming from them. The three main
variables on which cuts were applied in this analysis are the number of particles
in the final state, the prompt time window, and the proton missing mass (see
Section 7.2).

8.1.3.1 Number of particles in the final state

In the beam energy range of interest for this work, the recoil proton is never
detected. Therefore, the requirement of exactly one neutral particle in the final
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Figure 8.4: Sample of the average edge position distributions for tagging efficien-
cies and production runs in the left and right plot, respectively. The average edge
position for the tagging efficiencies was obtained by fitting the coherent enhance-
ment distribution every 100 scaler reads, giving around eight edge position values
per run, and calculating the average of these values. For the production runs,
the coherent enhancement distribution was fitted every scaler read, giving about
400 edge positions per run, and the plotted value is their average.
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Figure 8.5: Angular distribution of the two-neutral-cluster Compton scattering
Monte Carlo generated events. The y-axis gives the angular information of the
lower energy cluster as a function of the same variable for the higher energy one.
The two clusters tend to be very close, indicating a misconstructed single-cluster
event.
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state is the natural choice. Nevertheless, as shown in Fig. 7.3, in the analysis
of Monte Carlo generated Compton scattering data around 1.5% of events were
reconstructed with two neutral clusters. To study what these events are, the
kinematic distribution of the two clusters was studied.

Fig. 8.5 shows the angular distribution of one cluster versus the other, for both
the azimuthal φγ′ and the polar θγ′ angle. There is a clear correlation between the
position of the two clusters, and in particular they seem to be very close to each
other. This is an indication that they are produced by one single neutral particle
that was misconstructed by the cluster algorithm. Unfortunately, in the analysis
of production data it is extremely difficult to disentangle such events from a
neutral pion decay, and thereby from pπ0 production in which the proton was not
detected. Since neutral pion photoproduction has a three orders of magnitude
higher cross-section, a small change in the selection to include Compton events
with cluster splitting also caused the inclusion of a overwhelming number of
pπ0 events with a random electron detected in the tagger spectrometer with an
energy inside the cuts. Even though these events, being random, were eventually
subtracted from the final sample leaving the results unchanged, the statistical
errors increased. It was therefore decided to keep the strict selection of one
neutral cluster event, since this small amount of lost events is reproduced in
the Monte Carlo and should be corrected with the detection and reconstruction
efficiency.

8.1.3.2 Timing random background subtraction

The subtraction of random timing coincidences in the tagger spectrometer is
crucial in a tagged photon experiment. The conservative choice of considering
a prompt electron if ∆t = te− − tγ′ ∈ [−3, 3] ns minimized the errors after the
subtraction as much as possible. To check if Compton events were excluded by
this narrow cut, the analysis was repeated by doubling the prompt interval and
considering ∆tsys = te− − tγ′ ∈ [−6, 6] ns. The two results were compared and no
significant difference was found.

8.1.3.3 Missing mass cut

The most powerful cut that was applied in the analysis of the data is the one
on the proton missing mass. All the analyzed events have exactly one particle in
the final state, and the mass of the undetected particle (Mmiss) was calculated
using kinematics (see Section 7.2.4). If the event is actually a Compton scattering
event, the missing particle is the recoil proton and Mmiss should be equal to the
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Figure 8.6: Normalized residual for unpolarized Compton scattering cross-section
with different missing mass cuts. The cut used in the analysis was Mmiss =
[920 − 955] MeV. Black and red points show the residual when considering a
narrower (Mmiss = [924 − 951] MeV) and a wider (Mmiss = [916 − 959] MeV)
missing mass cut. Gaussian fits were performed to each residual distribution
(black and red line), and the results are also reported on the right.
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proton mass. Using studies on Monte Carlo generated data, the missing mass cut
for this analysis was set to be Mmin

miss = 920 MeV and Mmax
miss = 955 MeV.

The values set for the analysis were decided based on a double-Gaussian fit
of the Monte Carlo simulated missing mass distribution. In particular, the final
cuts were chosen to be µ ± 2.5σ where µ and σ are the mean and the width
of the fitting function (see Eqs. (7.5) and (7.6)). To test the stability of this
selection, the analysis was also performed with a looser and a tighter cut defined
as µ± 2.0σ and µ± 3.0σ, respectively. To give an idea on the absolute variation
of the cuts, this corresponds to narrowing or to widening the cut by 8 MeV, more
than a 20% variation with respect to the nominal cut. The compatibility between
the Compton scattering cross-section results obtained with the cuts used in the
analysis and with the looser and tighter ones was evaluated with the normalized
residual, defined as:

r =
dσ − dσsys√
∆dσ +∆dσsys

, (8.10)

where dσ and ∆dσ are the value and the error of the cross-section using the
final cuts, respectively, and dσsys and ∆dσsys are the value and the error of
the cross-section obtained with one of the two cuts defined above, respectively.
The distribution of the normalized residual is shown in Fig. 8.6, together with a
Gaussian fit of the two distributions. The results of the fits are also reported in
the canvas. The two obtained distributions have a mean compatible with zero,
while the standard deviation is smaller than expected. This could reflect the fact
that the two samples of points are not totally uncorrelated as they come from a
different analysis of the same dataset.

As a further check to estimate a possible systematic error coming from the
missing mass cut, the relative variation of each cross-section point was calculated
as

v =
dσ − dσsys

dσ
, (8.11)

and the average values over all bins was evaluated. The average value of the
relative variation for the loose and tight cuts are 0.3% and 0.4%, respectively.
Taken together, all these tests seem to indicate a strong stability of the results
to sizable variation in the missing mass cut. This proves that the Monte Carlo
efficiency correction works well in correcting for the additional Compton events
cut out with the narrower cut, and it is also an indication of a low background
contamination in the final sample. In fact, if this was not the case, one would
expect more background events to be selected by the wider cut and therefore
systematically higher cross-section results.
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Figure 8.7: Normalized residual for missing mass distribution using different
empty target samples. The first five canvases show the residual for the differ-
ent beam energy bins, the bottom right one shows the residual for the whole
energy region. Gaussian fits (black curves) were performed to each distribution
and the results are reported in the canvases.

8.1.4 Empty target subtraction

Due to the low energy threshold set for this experiment, a relatively high back-
ground contamination coming mainly from the target cell passed the trigger cut
and was recorded in the data sample. In the forward θγ′ region, this contamina-
tion is particularly important, together with the background generated by beam
photons converting into e+e− pairs. Therefore, a significant amount of beam time
was used to sample this background by collecting data with an empty target. The
liquid hydrogen target in the A2 setup can run in two different empty target con-
figurations: a first one called cold gas, where a small quantity of hydrogen remains
in the target (ρcgH2(1.419± 0.01)× 10−3 g/cm3, about 50 times smaller than the
LH2), and a pumped configuration, where ideally no hydrogen is left in the target
cell. The former empty mode is easier and quicker to obtain and it was used to
collect all the empty target sample during March 2018 beamtime, and half of the
one during July 2018 beamtime. The pumped mode is more time-consuming and
delicate, and it was used to collect just a small sample in order to check for any
appreciable difference between the two modes.

To compare the contribution of the empty target background in the two dif-
ferent modes, the missing mass distributions, normalized according to the flux,
were compared for the different bins in beam energy. To check for possible dis-
crepancies, the normalized residual for the two missing mass distributions were
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Figure 8.8: Missing mass distribution from the full target sample as a function of
the scattering angle θγ′ for the five different bins in beam energy. The red dotted
lines show the missing mass cuts applied in the analysis. The background peak
is clearly visible for θγ′ < 50◦ and Mmiss > 960 MeV.

calculated in a similar way to Eq. (8.10). The residual distributions for the five
different bins in beam energy are reported in the first five canvases of Fig. 8.7.
The bottom-right canvas shows the residual distribution for the whole energy and
angular region. Gaussian fits were performed and the results are also reported
in the canvases. They show a very nice agreement between the two empty target
samples, indicating that the cold gas mode does not significantly overestimate
the contribution of the empty target cell.

8.1.5 Background

The remaining background contamination in the final sample is difficult to esti-
mate. At beam energies below the pion photoproduction threshold, there are no
other prominent reaction channels that can be misidentified as Compton scat-
tering. The main background contributions could come from the target cell and
from the photon beam itself, and they were sampled and subtracted as already
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Figure 8.9: Missing mass distribution from the full target sample as a function
of the scattering angle θγ′ for the five different bins in beam energy, after the
subtraction of the empty target contribution. The red dotted lines show the
missing mass cuts applied in the analysis. Some remaining background is still
visible for θγ′ < 50◦ and Mmiss > 960 MeV.
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Figure 8.10: Energy distribution in the CB as a function of the scattering angle θγ′

for two different bins in beam energy, from the full target sample. The background
contribution is clearly visible at ECB ∼ 60 MeV for both beam energies.

explained. From the missing mass distributions in Fig. 7.10, the empty target con-
tribution seems to be more important at forward angles (red points in Fig. 7.10a),
and it does not fully describe the background peak on the right side in the full
target (blue points in Fig. 7.10a). In fact, after the subtraction, there is still a
small background peak on the right of the missing mass cuts (see Fig. 7.10b).
This is not the case for larger values of θγ′ (see Figs. 7.10c to 7.10e).

Fig. 7.10 shows a sample of the missing mass distribution for one bin in beam
energy. To have a more complete overview, the missing mass was plotted as a
function of the scattering angle θγ′ for all five bins in beam energy. Fig. 8.8 shows
the results for the full target sample, together with the cuts applied in the analysis
indicated by the red dashed lines. A few different observations can be made from
these spectra: (a) the background peak is mainly visible at forward scattering
angle (θγ′ < 50◦); (b) the background contribution is more important at higher
beam energies, and for ωγ = 135.3 MeV the background peak is higher than the
Compton missing mass peak at forward angle; (c) the background missing mass
value shifts with the beam energy, in particular it moves ∼ 10 MeV from one bin
to the other fromM bkg

miss ∼ 965 to 1005MeV. This last point is the more interesting
one to understand the nature of this additional background, and it indicates that
its energy is independent of the beam energy. By looking at the energy released
in the CB as a function of the scattered angle — two examples for the lower and
higher beam energy are reported in Fig. 8.10 — the energy of the background
seems to be ∼ 60 MeV. Another interesting variable to look at is the size of the
cluster created by these particles in the CB, meaning the number of crystals in
which they deposited energy. As previously explained, hadrons tend to deposit
all their energy in one or two crystals, while this is not true for photons and
pions. Fig. 8.11 shows two examples of the missing mass distribution as function
of the cluster size for the two extreme beam energies. The Compton events



8.1. Systematic studies 163

0 2 4 6 8 10
Cluster size

850

900

950

1000 [M
eV

]
m

is
s

M

0

1

2

3

4

5

6

7

310×=92.2 MeVγω

0 2 4 6 8 10
Cluster size

850

900

950

1000 [M
eV

]
m

is
s

M

0
2

4
6
8
10

12
14
16

18
20
22

310×=135.3 MeVγω
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(b) Empty target subtracted.

Figure 8.11: Missing mass distribution as a function of the number of CB crystals
in the cluster using the full target sample, before and after the subtraction of
the empty target contribution, in the top and bottom canvas, respectively. The
results are shown for the lower and higher energy bin on the left and on the right,
respectively. The background contribution is clearly visible in the full target
sample for cluster size equal to one and Mmiss > 960 MeV. After the subtraction
of the empty target contribution, there is only a small background left with cluster
size equal to two and three.
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within the missing mass cuts deposited their energy in average in three or four
crystals as expected. The background peak, clearly visible at Mmiss > 955 MeV,
is composed of particles that deposited their energy in one or two crystals. This
seems to indicates that they are probably neutrons. On the other hand, the same
distributions after the subtraction of the empty target contribution no longer
show the peak at cluster size equal to one, indicating that the small remaining
background after the empty target subtraction — visible in Fig. 8.9 at Mmiss >

955 MeV — is probably not composed of those neutrons. This was also proved
by the fact that imposing a cut on the cluster size in the analysis did not change
the final results significantly. Taken all together, these tests indicate a prominent
background contamination mainly composed of neutrons with ECB ∼ 60 MeV in
the full target sample that was correctly sampled and subtracted, even though a
small part of this background with a cluster composition similar to a photon still
remained in the final sample.

After the subtraction of the empty target contribution, the remaining back-
ground was cut away by the missing mass selection, with the exception of the
lower beam energy bin. For this particular bin, the missing mass value of the
background is just to the right of the applied cuts, as visible in the top-left panel
of Fig. 8.9. Therefore, it was decided to estimate an additional systematic error
for possible background contamination.

To estimate the systematic error, a few assumptions were made: (1) most of
the background comes from the photon beam and the target cell; (2) this back-
ground should be described by the empty target sample; (3) the background peak
still visible in the missing mass spectra after the empty target subtraction may
be due to a non-perfect flux normalization, and consequently an underestimation,
of the empty target sample. Taking these assumptions together, the remaining
background contamination was estimated from rescaling the empty target sample.
As first, a normalization factor (fnorm(ωγ)) for each bin in beam energy was found
so that the background peak to the right of the Compton scattering missing mass
peak in the full target sample, was also fully described in the empty target sam-
ple. The factor was found to vary from 1.25 to 1.05 from the lower to the higher
beam energy bin. The relative empty target contribution (Nemptyrel(ωγ, θγ′)) was
then calculated for each bin in beam energy and scattering angle as:

N rel
empty(ωγ, θγ′) =

Nempty(ωγ, θγ′)

Nfull(ωγ, θγ′)
, (8.12)

where Nfull(ωγ, θγ′) and Nempty(ωγ, θγ′) are the number of events for each bin in



8.1. Systematic studies 165

16
.97

 %

11
.85

 %

7.8
7 %

6.9
7 %

6.8
5 %

6.3
1 %

4.4
4 %

3.9
0 %

4.4
7 %

4.9
6 %

3.7
2 %

6.9
2 %

12
.14

 %

7.6
6 %

6.7
2 %

5.3
9 %

4.7
2 %

3.8
6 %

4.3
2 %

2.8
8 %

1.9
1 %

0.1
3 %

0.6
8 %

5.2
5 %

9.4
5 %

6.0
7 %

4.6
8 %

4.0
0 %

3.1
6 %

3.2
4 %

2.6
6 %

2.3
1 %

1.6
3 %

1.4
1 %

1.8
7 %

4.5
0 %

4.9
3 %

3.3
3 %

2.3
0 %

1.5
4 %

1.5
6 %

1.4
2 %

1.0
4 %

0.5
7 %

0.6
5 %

0.8
6 %

0.4
6 %

0.7
4 %

4.0
3 %

2.3
9 %

1.4
5 %

0.9
6 %

1.2
7 %

0.8
6 %

0.6
8 %

0.6
5 %

0.6
8 %

0.4
2 %

0.6
4 %

0.5
7 %

40 60 80 100 120 140
]° [',labγθ

80

90

100

110

120

130

140
 [M

eV
]

, l
ab

γ
ω

2

4

6

8

10

12

14

16

S
ys

te
m

at
ic

 E
rr

or
 [%

]

Figure 8.12: Systematic errors due to the background contamination as a func-
tion of the beam energy ωγ and the scattering angle θγ′ . They are calculated
as the relative empty target contribution to the full target sample scaled by a
normalization factor. This factor is determined such that the background peak
in the empty target fully describe the one in the full target.

energy and scattered angle for the full and empty target sample, respectively.
The final systematic uncertainties for each bin were then defined as

δσsys
bkg(ωγ, θγ′) = N rel

empty(ωγ, θγ′) (1− fnorm(ωγ)) . (8.13)

The results are reported in Fig. 8.12, and they vary in a wide range from 6%

in the lower energy region to less than 1% in the higher energy region, with the
exception of the most forward bin where the background contamination is higher.

8.1.6 Comparison of the two beamtimes

The dataset used for this experiment was collected in two separate beamtimes.
Although the experimental conditions were kept identical for both periods, these
can be considered as two (at least partially) independent measurements. The
final results from the two individual beamtimes should be in agreement within



166 8. Determination of the unpolarized cross-section

Normalized residual
3− 2− 1− 0 1 2 3

E
nt

rie
s

0

5

10

15

20
=0.000+/-0.000µ
=0.954+/-0.134σ

/dof=0.4102χ

Figure 8.13: Normalized residual for the unpolarized Compton scattering cross-
section obtained using March 2018 data with respect to the results obtained using
July 2018 data. A Gaussian fit was also performed (black line), and the results
are reported on the right.

their errors, in order to exclude systematic differences between them. To check
this, the normalized residual for the two unpolarized cross-sections obtained using
the two separated beamtimes were calculated, using Eq. (8.10). The results are
reported in Fig. 8.13. As expected, the residuals are Gaussian distributed, with
a mean compatible with zero. This indicates an absence of an overall systematic
effect between the two beamtimes. It may be interesting to check the residual
distributions for the different beam energy bins. Although the small number of
points does not allow for a Gaussian fit to each beam energy bin (there are only
twelve angular bins for each energy), the mean and Root Mean Square (RMS) of
the twelve normalized residuals in each energy bin can give a good estimate of
the agreement. The obtained results are:

ωγ = 92.2 MeV : µ = − 0.63, RMS = 0.77

ωγ = 103.2 MeV : µ = − 0.03, RMS = 1.14

ωγ = 113.6 MeV : µ = 0.08, RMS = 0.75

ωγ = 124.1 MeV : µ = 0.24, RMS = 0.93

ωγ = 135.3 MeV : µ = 0.21, RMS = 0.83.
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As a rule of thumb, the bias is negligible compared to the statistical uncertainty
if the ratio mean/RMS < 0.25 [135], which is the case for all the bins but the
first. For the low energy bin, there seems to be a significant discrepancy between
the results obtained with the two different beamtimes. In particular, given the
negative sign of the mean, the results of the July 2018 beamtime are higher
than the March 2018 ones. In order to center the residual distribution to zero,
the March 2018 results have to be increased by 6%, but this of course makes the
results in all the other bins incompatible. To account for this possible discrepancy
between the two results, a 3% systematic uncertainty — the half of the factor
needed to resolve the discrepancy — was added to the total systematic error for
the lower energy bin only.

8.1.7 Sum of systematic uncertainties

The different sources of systematic errors described above can be considered as
independent, at least in the first approximation, therefore they can be added in
quadrature to give the total systematic uncertainties that would be Gaussian.
However, it is important to note that the different sources may affect the results
in different ways, and so they should be treated differently. The systematic un-
certainties on target density δσsys

ρ , photon flux δσsys
Φ and analysis cuts and Monte

Carlo simulation δσsys
cuts affect all the cross-section points in the same way, scaling

the final results in one way or the other. The remaining sources of systematic
errors — background contamination δσsys

bkg and the comparison between the two
beamtimes δσsys

beam — may independently affect the different points. The last con-
tribution in particular, δσsys

beam, affects only the points in the lower energy bin.
The different systematic uncertainties are summarized in Table 8.1. The total
systematic error can be calculated in RMS units as:

δσsys
corr =

√
(δσsys

ρ )2 + (δσsys
Φ )2 + (δσsys

cuts)
2 = 3.0% (8.14)

δσsys
uncorr(ωγ, θγ′) =

√(
δσsys

bkg(ωγ, θγ′)
)2

+ (δσsys
beam)(ωγ, θγ′)2.

where subscripts corr and uncorr indicates that the systematic errors are corre-
lated and point-to-point uncorrelated, respectively.
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Figure 8.14: The new A2 Collaboration data on the proton Compton scattering
unpolarized cross-section using the March 2018 data, for the five different beam
energy bins. The errors are statistical only. The systematic uncertainties are
depicted as gray bars. Brown curves represent the Born contribution only. Red,
blue and green curves represent the theoretical calculation for fixed values of both
scalar and spin polarizabilities within DR [40, 41], BχPT [47] and HBχPT [52]
frameworks, respectively.
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Figure 8.15: The new A2 Collaboration data on the proton Compton scattering
unpolarized cross-section using the July 2018 data, for the five different beam
energy bins. The errors are statistical only. The systematic uncertainties are
depicted as gray bars. Brown curves represent the Born contribution only. Red,
blue and green curves represent the theoretical calculation for fixed values of both
scalar and spin polarizabilities within DR [40, 41], BχPT [47] and HBχPT [52]
frameworks, respectively.
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Figure 8.16: The new A2 Collaboration data on the proton Compton scattering
unpolarized cross-section combining the results from the two different beamtimes,
for the five different beam energy bins. The errors are statistical only. The
systematic uncertainties are depicted as gray bars. Brown curves represent the
Born contribution only. Red, blue and green curves represent the theoretical
calculation for fixed values of both scalar and spin polarizabilities within DR [40,
41], BχPT [47] and HBχPT [52] frameworks, respectively.
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Table 8.1: Relative systematic uncertainties on the unpolarized Compton scat-
tering cross-section in RMS units.

δσsys
ρ δσsys

Φ δσsys
cuts δσsys

bkg δσsys
beam

1% 2% 2% see Fig. 8.12

{
3%, if ωγ ≤ 98.2 MeV
0, otherwise

8.2 Results

Figs. 8.14 to 8.16 show the new A2 Collaboration data on the proton Compton
scattering unpolarized cross-section for the March and the July 2018 beamtime
separately, and for the combined results, respectively. They cover a photon beam
energy from 86.2 to 140.4 MeV, in five different bins. The error bars represent
the statistical errors. The absolute systematic uncertainties are depicted as gray
bars, and they were calculated as

∆σsys
tot (ωγ, θγ′) =

√
(δσsys

corr)
2 + (δσsys

uncorr(ωγ, θγ′))2σ(ωγ, θγ′), (8.15)

where σ(ωγ, θγ′) is the cross-section value in that bin. The brown curves repre-
sent the Born contribution to the unpolarized cross-section (see Section 2.1.2.1).
The red, blue and green curves represent the theoretical calculations within
DR [40,41], BχPT [47] and HBχPT [52] frameworks, respectively. In each of these
calculations, the values for the different polarizabilities were fixed at: αE1 = 11.2,
βM1 = 2.5, γE1E1 = −2.87, γM1M1 = 2.70, γE1M2 = −0.85, and γM1E2 = 2.04, in
the usual units. The values for the scalar polarizabilities are the ones quoted by
the PDG [55], while the spin polarizabilities were taken from the last experimen-
tal paper by the A2 Collaboration [19]. Even though the χEFT based theories
are able to predict the values for the spin polarizabilities, the choice of keeping
them fixed at the most recent experimental values was done in order to have a
direct comparison between the three theories using the same parameters.





Chapter 9

Determination of the beam
asymmetry Σ3

The use of a linearly polarized photon beam in combination with an unpolar-
ized target introduces an azimuthal dependence to the Compton scattering cross-
section, and allows for the determination of the single polarization observable Σ3.
Defining ϕ as the angle between the scattering plane and the photon polarization
plane, the polarized cross-section modulation can be written as

dσ

dΩpol
(ωγ, θγ′ , ϕ) =

dσ

dΩunpol
(ωγ, θγ′) (1 + pγΣ3 cos(2ϕ)) , (9.1)

where dσ
dΩpol

and dσ

dΩunpol
are the polarized and unpolarized cross-section, respec-

tively, and pγ is the degree of linear polarization. The photon polarization plane
(in green in the sketch in Fig. 9.1) is defined by the incoming photon momentum
~k and the polarization vector ~ε, while the scattering plane (in blue in Fig. 9.1) is
defined by the particles in the final state. The angle ϕ between the two planes
is related to the measured azimuthal angle φγ′ of the scattered photon in the
detector lab system by the relation

ϕ = φγ′ + ϕ0, (9.2)

where ϕ0 gives the orientation of the photon polarization plane in the detector
lab system.

The beam asymmetry Σ3 can be determined from Eq. (9.1) by measuring the
polarized Compton scattering cross-section. To minimize the systematic errors
due to flux normalization and acceptance efficiency correction, an easier way to
extract Σ3 is by constructing an asymmetry. This can be done by measuring

173
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Figure 9.1: Scheme of the photon polarization and reaction scattering planes.
The former, in green, is defined by the incoming photon momentum ~k and the
polarization vector ~ε. The latter, in blue, is given by the scattered photon and
the recoil proton momenta ~k′ and ~q′, respectively. Adapted from Ref. [97]

the polarized Compton scattering cross-section with two different orthogonal ori-
entations of the photon polarization plane, usually called “parallel” (para) and
“perpendicular” (perp). The two orthogonal orientations can be obtained by
rotating the polarization vector ~ε by 90◦. The names of “parallel” and “per-
pendicular” refer to the fact that conventionally the diamond radiator is set to
have the beam polarization plane parallel or perpendicular to the x-z plane in
the detector lab system, namely ϕ‖

0 = 0 and ϕ⊥
0 = 90◦. Nevertheless, these two

values can be chosen arbitrarily as long as they remain orthogonal to each other.
For the experiments in this dissertation, slightly different values were chosen for
the two beamtimes. The actual values were obtained directly from the data by
fitting the φγ′ distributions. In order to maximize the statistics, the distributions
were integrated over θγ′ and ωγ. The same distributions were calculated for the
full and empty target samples; the latter was scaled with the ratio of the photon
beam fluxes and subtracted from the former. The resulting distributions were
fitted using the following function, derived from Eq. (9.1):

f(φγ′) = a+ b cos(2(φγ′ + ϕ0)), (9.3)

where a and b are parameters accounting for the unpolarized cross-section, the
beam asymmetry and the degree of linear polarization. The resulting distribu-
tions are reported in Fig. 9.2, and the values of ϕ0 obtained are:

• March 2018: ϕ‖
0 = 45◦ and ϕ⊥

0 = −45◦

• July 2018: ϕ‖
0 = 43◦ and ϕ⊥

0 = −46◦.
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Figure 9.2: Extraction of ϕ0 by fitting φγ′ distributions separated for the two
beamtimes, for the parallel and perpendicular datasets. The gray curves are the
fit functions defined in Eq. (9.3). The values of ϕ0 obtained for each dataset
are reported in the figures. The 90◦ shift in the cosine distribution between the
parallel and perpendicular distributions is clearly visible.
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From Eq. (9.1), the two polarized cross-sections with the two different orien-
tations of the photon polarization plane can be defined as:

σ‖(ωγ, θγ′ , ϕ) = σunpol(ωγ, θγ′)
(
1 + p‖γΣ3 cos(2ϕ)

)
(9.4)

and
σ⊥(ωγ, θγ′ , ϕ) = σunpol(ωγ, θγ′)

(
1 + p⊥γ Σ3 cos(2(ϕ+ 90◦))

)
= σunpol(ωγ, θγ′)

(
1− p⊥γ Σ3 cos(2ϕ)

) (9.5)

where σ‖(⊥) ≡ dσ

dΩ

‖(⊥)

and p
‖(⊥)
γ are the cross-sections and the degree of linear

polarization obtained with the two orthogonal orientations of the photon polar-
ization plane, respectively. Using Eqs. (9.4) and (9.5), an asymmetry can be
constructed as

σ‖ − σ⊥

σ‖ + σ⊥ =
σunpol

(
1 + p

‖
γΣ3 cos(2ϕ)

)
− σunpol

(
1− p⊥γ Σ3 cos(2ϕ)

)
σunpol

(
1 + p

‖
γΣ3 cos(2ϕ)

)
+ σunpol

(
1− p⊥γ Σ3 cos(2ϕ)

) , (9.6)

where the dependency from angles and energies are left out for convenience. The
beam asymmetry Σ3 in Eq. (9.6) can be isolated as

A(ϕ) = Σ3 cos(2ϕ) =
σ‖(ωγ, θγ′ , ϕ)− σ⊥(ωγ, θγ′ , ϕ)

p⊥γ σ
‖(ωγ, θγ′ , ϕ) + p

‖
γσ⊥(ωγ, θγ′ , ϕ)

=
N‖(ωγ, θγ′ , ϕ)−N⊥(ωγ, θγ′ , ϕ)

p⊥γN
‖(ωγ, θγ′ , ϕ) + p

‖
γN⊥(ωγ, θγ′ , ϕ)

.

, (9.7)

where N‖(⊥) is the number of events normalized for the photon flux for the two
polarization settings used in the experiment, and p

‖(⊥)
γ is the average degree of

linear polarization obtained as:

p‖(⊥)
γ =

∑N
‖(⊥)
e

i p
‖(⊥)
γ,i

N
‖(⊥)
e

, (9.8)

where N‖(⊥)
e is the total number of events in the final sample for the two different

polarization settings. The statistical errors of A(ϕ) were calculated according to
Gaussian error propagation.

The asymmetry A(ϕ) defined in Eq. (9.7) was constructed from the data. At
first, the asymmetry was integrated over the scattering angle θγ′ and the beam
energy ωγ, and the resulting distribution was fitted using Eq. (9.3) to extract the
value of ϕ0 for the asymmetry. This should be equal to the one obtained for the
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Figure 9.3: Extraction of ϕ0 from the A(φγ′) distribution separated for the two
main beamtimes. The gray curves are the fit functions defined in Eq. (9.3). The
values of both ϕ0 and a are reported in the canvas.

parallel distribution in Fig. 9.2. Moreover, the parameter a in Eq. (9.3) should
be exactly zero if the event rates for the two different polarization settings are
properly normalized. The results for the two different beamtimes are reported in
Fig. 9.3. Following these results, the fitting function to be used for the extraction
of the beam asymmetry Σ3 from the data can be defined as:

f(φγ′) = a+ b cos(2(φγ′ + ϕ0)) where ϕ0 =

(44.9± 1.2) for March

(43.8± 1.2) for July
. (9.9)

To account for the finite size of the φγ′-binning in the A(ϕ) distributions to be
fitted, an additional prefactor should be added as

sin(φγ′,f − φγ′,i)/(φγ′,f − φγ′,i), (9.10)

where φγ′,i and φγ′,f are the lower and upper limits of each bin, respectively.
It can be derived from the integration over φγ′ of the asymmetry A(ϕ), where
the cos(2φ) modulation cancels out only in the sum in the denominator. There-
fore, the integration of a finite bin damps the amplitude of the modulation in
the numerator, causing the true-asymmetry at the mid-point to be higher than
the average over the bin [136]. The final equation used to fit the experimental
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asymmetry and to extract the beam asymmetry follows from Eq. (9.9):

f(φγ′) = a+
sin(∆φγ′)

∆φγ′
b cos(2(φγ′+ϕ0)) where ϕ0 =

(44.9± 1.2) for March

(43.8± 1.2) for July
(9.11)

where ∆φγ′ = φγ′,f − φγ′,i for each bin in φγ′ . A binning of 30◦ was chosen for
this analysis, therefore the prefactor to be used for each bin can be calculated
as sin(φγ′,f − φγ′,i)/(φγ′,f − φγ′,i) = 3/π ≈ 0.95493. The selected photon beam
energy range (see Section 7.2.3) was divided into three bins: ωγ = 86.3−98.2MeV,
ωγ = 98.1 − 118.7 MeV, and ωγ = 118.7 − 140.4 MeV. In each energy bin, the
data were further divided into 12 scattering angle bins from 30− 150◦, each 10◦

wide. A total of 36 (ωγ, θγ′) bins were obtained for each of the two beamtimes.
The distribution in each (ωγ, θγ′) bin was fitted using Eq. (9.11), and the results
are reported in Appendix C. In the fit, a was left as a free parameter even though
it was found to be compatible with zero in the fit of the integrated distribution.
The distribution of this parameter resulting from the fit of the single (ωγ, θγ′)

bins is shown in Fig. 9.4a. The distribution was fitted using a Gaussian function,
and the results are reported within the figure. As expected, the mean of the
distribution is consistent with zero. To examine the goodness of the fits to the
data for the extraction of the beam asymmetry Σ3, the reduced χ2 distribution
is reported in Fig. 9.4b. The average value of the distribution is very close to 1,
showing an overall good quality of the fit results and a successful extraction of
the beam asymmetry Σ3 from the data.

9.1 Systematic studies

The calculation of an asymmetry is extremely convenient from the point-of-view
of the systematic uncertainties, since many effects such as flux normalization,
target density and Monte Carlo efficiency cancel out in the final results. The
two sources of systematic uncertainties that dominate in the measurement of the
beam asymmetry Σ3 are the determination of the linear polarization degree and
the background contamination.

9.1.1 Degree of linear polarization

As described in Section 6.2, the degree of linear polarization is extracted from the
fit of the coherent enhancement distribution. It is not easy to estimate an error
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Figure 9.4: Distribution of the fit parameters resulting from the fit to the exper-
imental asymmetry A(φγ′). On the left, the offset parameter is plotted together
for the two beamtimes. The Gaussian fit in gray confirms that the offset is com-
patible with zero. On the right, the reduced χ2 distribution is shown. The average
χ2 value is 0.96.

due to this procedure, but an upper limit for this is estimated to be δΣsys
pol = 5%,

uniformly distributed. [97, 137].

9.1.2 Background contamination

The background contamination in the final sample can affect the beam asymmetry
results. In particular, the measured asymmetry value Σmeas

3 can be decomposed
into the real asymmetry value Σreal

3 and the background asymmetry Σbkg
3 as:

Σmeas
3 = (1− δbkg)Σ

real
3 + δbkgΣ

bkg
3 , (9.12)

where δbkg is the background contamination in the final sample. Since the back-
ground contamination is generally low as discussed in Section 8.1.5, it is difficult
to properly determine the background asymmetry Σbkg

3 , and different attempts
of using a sideband analysis to calculate the background asymmetry led to an
unreliable value with a very large systematic error. Therefore, it was not possi-
ble to extract the real asymmetry value from the measured one. It was decided,
instead, to assign a systematic error to account for possible background contam-
ination in the final sample. As an upper limit, it is safe to assume that the
absolute systematic error due to the background contamination is of the same
order as the relative background contamination left in the sample. This derives
from the assumption that Σbkg

3 can take any value from the physically allowed
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Figure 9.5: Normalized residual for the Compton scattering beam asymmetry Σ3

obtained using the March 2018 data with respect to the results obtained using the
July 2018 data. A Gaussian fit was also performed (black line), and the results
are reported on the right.

interval [−1, 1] and was discussed in details in Ref. [137]. Despite the fact that it
may overestimate this source of systematic uncertainty, it was decided to take

∆Σsys
bkg(ωγ, θγ′) = δbkg(ωγ, θγ′)/100, (9.13)

where δbkg(ωγ, θγ′) is the percentage of background contamination as reported in
Fig. 8.12. The analysis for the extraction of the beam asymmetry was performed
with a different beam energy binning, because of the larger statistical errors. As
explained before, the same 15 tagger channels used for the unpolarized cross-
section were divided in three asymmetrical bins: the first beam energy bin is
the same for both unpolarized cross-section and beam asymmetry, while each of
the other two bins of the Σ3 analysis were obtained by merging two of the bins
of the cross-section analysis. Therefore, the background contamination for the
second and the third energy bins of the Σ3 analysis was obtained as an average
between the second and third, and the fourth and fifth energy bin in Fig. 8.12,
respectively.
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9.1.3 Comparison of the two beamtimes

The beam asymmetry results obtained using the two different beamtimes were
compared and the distribution of the normalized residuals was checked, as it was
done for the unpolarized cross-section in Section 8.1.6. The normalized residuals
were calculated using Eq. (8.10) and the results are reported in Fig. 9.5. A
Gaussian fit was also performed and the results are reported in the canvas. The
fit results seem to exclude a possible systematic shift. However, due to the small
number of points the fit may not be fully reliable. The mean and RMS of the
36 normalized residual were calculated, resulting in µ = 0.10 and RMS = 0.80,
respectively, confirming the fit results. The µ/RMS = 0.125 indicates that the
bias is negligible, considering also the sizable uncertainty on the degree of linear
polarization. The normalized residual distributions for the three different bins in
beam energy were also checked, and the means and RMS of the three groups of
12 residual were calculated as well. The obtained results are:

ωγ = 92.2 MeV : µ = 0.26, RMS = 0.80

ωγ = 108.5 MeV : µ = 0.15, RMS = 0.87

ωγ = 129.5 MeV : µ = − 0.16, RMS = 0.84.

Similar to the unpolarized cross-section results, there seems to be a small offset
in the first energy bin, but in this case it has the opposite sign because the beam
asymmetries are negative. This bias can be corrected by increasing the March
results by 6%, same as for the cross-section. It was therefore decided to account
for an additional 3% systematic uncertainty for this first energy bin.

9.1.4 Sum of systematic uncertainties

For the beam asymmetry Σ3, the relative systematic uncertainty in the extrac-
tion of the linear polarization δΣsys

pol affects all the final points in the same way,
scaling the final results up or down. The absolute systematic uncertainty due to
the background contamination and the relative uncertainty due to the imperfect
agreement of the low-energy points between the two different beamtimes may
affect each point independently. The different systematic uncertainties are sum-
marized in Table 9.1. The total systematic error in RMS units can be calculated
as:

δΣsys
corr = δΣsys

pol =
(
5/
√
3
)
% ≈ 2.89% (9.14)
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Table 9.1: Relative systematic uncertainties on the Compton scattering beam
asymmetry Σ3 in RMS units.

δΣsys
pol ∆Σsys

bkg δΣsys
beam

2.89% see Fig. 8.12

{
3%, if ωγ ≤ 98.2 MeV
0, otherwise

∆Σsys
uncorr(ωγ, θγ′) =

√(
∆Σsys

bkg(ωγ, θγ′)
)2

+ (δΣsys
beam(ωγ, θγ′)Σ3(ωγ, θγ′))2.

where subscripts corr and uncorr indicates that the systematic errors are corre-
lated and point-to-point uncorrelated, respectively. It is important to note here
that the latter is given as an absolute error, as opposed to the former.

9.2 Results

Figs. 9.6 to 9.8 show the new A2 Collaboration data on the proton Compton
scattering beam asymmetry Σ3 for the March and July 2018 beamtimes sepa-
rately, and for the combined results, respectively. They cover a photon beam
energy from 86.2 to 140.4 MeV, in three different bins. The error bars represent
the statistical errors. The absolute systematic uncertainties are depicted as gray
bars, and they were calculated as

∆Σsys
tot (ωγ, θγ′) =

√
(δΣsys

corrΣ3(ωγ, θγ′))2 + (∆Σsys
uncorr(ωγ, θγ′))2. (9.15)

The brown curves represent the Born contribution to the beam asymmetry Σ3.
The red, the blue and the green curves represent the theoretical calculations
within DR [40, 41], BχPT [47] and HBχPT [52] frameworks, respectively. In
each of these calculations, the values for the different polarizabilities were fixed
at: αE1 = 11.2, βM1 = 2.5, γE1E1 = −2.87, γM1M1 = 2.70, γE1M2 = −0.85,
and γM1E2 = 2.04, in the usual units. The values for the scalar polarizabilities
are the ones quoted by the PDG [55], while the spin polarizabilities were taken
from the last experimental paper from the A2 Collaboration [19]. Also for the
case of the beam asymmetry, the χEFT based theories could predict the values
for the spin polarizabilities, but it was decided to keep them fixed at the most
recent experimental values in order to have a direct comparison between the three
theories using the same parameters.
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(c) 118.7 MeV < ωγ < 140.4 MeV.

Figure 9.6: The new A2 Collaboration data on the proton Compton scattering
beam asymmetry Σ3 using the March 2018 data, for the three different beam
energy bins. The errors are statistical only. The systematic uncertainties are
depicted as gray bars. Brown curves represent the Born contribution only. Red,
blue and green curves represent the theoretical calculation for fixed values of both
scalar and spin polarizabilities within DR [40, 41], BχPT [47] and HBχPT [52]
frameworks, respectively.
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(c) 118.7 MeV < ωγ < 140.4 MeV.

Figure 9.7: The new A2 Collaboration data on the proton Compton scattering
beam asymmetry Σ3 using the July 2018 data, for the three different beam energy
bins. The errors are statistical only. The systematic uncertainties are depicted
as gray bars. The brown curves represent the Born contribution only. Red, blue
and green curves represent the theoretical calculation for fixed values of both
scalar and spin polarizabilities within DR [40, 41], BχPT [47] and HBχPT [52]
frameworks, respectively.
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Figure 9.8: The new A2 Collaboration data on the proton Compton scattering
beam asymmetry Σ3 combining the results from the two different beamtimes,
for the three different beam energy bins. The errors are statistical only. The
systematic uncertainties are depicted as gray bars. The brown curves represent
the Born contribution only. Red, blue and green curves represent the theoretical
calculation for fixed values of both scalar and spin polarizabilities within DR [40,
41], BχPT [47] and HBχPT [52] frameworks, respectively.





Chapter 10

Results and discussion

The new A2 Collaboration data on the proton Compton scattering unpolar-
ized cross-section dσ/dΩ and beam asymmetry Σ3 were presented in Chapters 8
and 9, respectively. These results were obtained from the analysis of two different
datasets taken in March and July 2018 at the MAMI tagged photon facility in
Mainz, Germany. They provide new high-statistics measurements well suited for
the study of the proton scalar polarizabilities αE1 and βM1, two parameters that
quantify the response of a proton to an applied external electromagnetic field. As
discussed in the theoretical review at the beginning of this dissertation, these two
scalar polarizabilities contribute to the second order of the effective Hamiltonian
— as well as to the low-energy expansion of the cross-section — for Compton
scattering. They can therefore be extracted by fitting the data using one of the
different theoretical models available.

The fits to the new data presented in this thesis were performed with a routine
that takes the polarizabilities as input parameters and varies them in order to
find the values that best describe the data. This is done by minimizing a χ2

distribution usually defined as:

χ2(P) =
Nsets∑

j

Nj
pt∑
i

(
Oexp

ij −Othr
ij (P)

∆Oexp
ij

)2
 , (10.1)

where Oexp
ij are the experimental values of the measured observable, ∆Oexp

ij are
their statistical uncertainties in RMS units and Othr

ij (P) are the predicted the-
oretical values for the given set of polarizabilities P . The sums run over all
the datasets j = 1, . . . , Nsets and the experimental points i = 1, . . . , N j

pt in each
dataset. The uncorrelated point-to-point systematic errors were added in quadra-
ture to the statistical ones. The correlated systematic uncertainties, instead, were

187
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included into the fit as common normalization factors, one for each dataset, and
treated as additional fit parameters. The consequent χ2 function to be minimized
was obtained by modifying Eq. (10.1) as follows [138]

χ2(P) =
Nsets∑

j

Nj
pt∑
i

(
sjO

exp
ij −Othr

ij (P)

sj∆O
exp
ij

)2

+

(
sj − 1

∆sj

)2
 , (10.2)

where sj is the scaling factor for the j-th dataset. The χ2 function was minimized
using the MINUIT minimization routine [139] and the result of the fit is the set
of polarizabilities P̄ that correspond to the minimum of the χ2 function.

10.1 Data fitting with L’vov DR model

The first analyses were done using the dataset from the TAPS collaboration, pre-
sented in Section 3.1.5. It was fitted using the same conditions as in Ref. [67], us-
ing the L’vov DR model [68] with the pion photoproduction multipoles of Arndt et
al. [42], solution SAID-SM99K, and by fixing the value of the backward spin polar-
izability γπ = −37.1 [140]. The results obtained were identical to those reported
in Table 3 in the original publication [67].

This analysis was simply used as a test for the validity of the fitter. The
commonly accepted value for the backward polarizability is slightly different from
what was used for the fitting of the TAPS dataset. The most recent value comes
from a combined analysis of some existing datasets from MAMI [140], LARA [141]
and Saskatoon [65], resulting in γπ = −38.7 [26]. Moreover, more recent pion
photoproduction multipoles are available, with the inclusion of the newer data.
For the analyses of the new data, it was decided to use the MAID07 model [44].
The changes both in the value of the γπ constraint and in the model used for
the calculation of the multiple amplitudes may affect the results of the fit by
shifting the central values of the two scalar polarizabilities, but they should not
influence the final errors. The fits to the TAPS dataset were repeated with the
new conditions, with and without the Baldin sum rule constraint αE1 + βM1 =

13.8± 0.4, and the minimum of the χ2 function in Eq. (10.1) was obtained with
the following polarizabilities:

with α + β = 13.8± 0.4 with α + β = free

αE1 = 11.6± 0.4± 1.0 αE1 = 11.2± 0.5± 1.2 (10.3)

βM1 = 2.1∓ 0.4∓ 0.8 βM1 = 1.5± 0.7± 0.3
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χ2
red = 83.20/64 = 1.30 χ2

red = 82.30/63 = 1.31

where the quoted errors are statistical and systematic, respectively. The system-
atic errors are calculated as the difference in the values of αE1 and βM1 caused
by a 3% scaling of the whole dataset. Comparing these values with the original
ones reported in Section 3.1.5 and Table 3.1, the errors did not change, while the
central values of βM1 slightly increased.

The same fit procedure was performed on the new data. The two different
beamtimes were treated as independent datasets resulting in 192 points in total,
divided in four different datasets: two cross-section datasets with 60 points each,
and two beam asymmetry datasets with 36 points each. The uncorrelated point-
to-point systematic uncertainties δσsys

uncorr and ∆Σsys
uncorr of Eqs. (8.14) and (9.14)

were added in quadrature to the statistical errors of the cross-section and the
beam asymmetry values, respectively. The fit to the new A2 Collaboration data
with and without the Baldin sum rule constraint resulted in:

with α + β = 13.8± 0.4 with α + β = free

αE1 = 11.67± 0.17± 1.00 αE1 = 11.78± 0.18± 1.10 (10.4)

βM1 = 2.77∓ 0.23∓ 0.52 βM1 = 3.02± 0.26± 0.33

χ2
red = 155.01/191 = 0.81 χ2

red = 150.96/190 = 0.79

where the quoted errors are statistical and systematic, respectively. The latter
are calculated in the same way as for the TAPS results. The four datasets were
scaled by their relative systematic errors in RMS units δσsys

corr = 3% and ∆Σsys
corr =

5/
√
3% for the cross-section and the beam asymmetry, respectively. The fits were

repeated with the scaled datasets and the differences in the central values of αE1

and βM1 were assigned as systematic errors.

To compare the polarizabilities extracted from the new data with the ones
extracted from the TAPS dataset, reported in Eq. (10.3), the discrepancy in terms
of RMS was calculated for each result using the squared sum of the statistical
and systematic component as errors. When the Baldin sum rule constraint is
considered, both αE1 and βM1 are in agreement well inside one sigma. In the
unconstrained fit, the value of αE1 is still in perfect agreement, while the difference
in the values of βM1 is larger but still consistent within two sigma. The results
obtained with the new A2 Collaboration data are also in fair agreement with the
values quoted by the PDG obtained from the fit of all the existing extractions
(αE1 = 11.2±0.4 and βM1 = 2.5±0.4) [55]. Since the main goal of this work was
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the measurement of a new high-statistics dataset for the extraction of these two
parameters, it is more interesting to compare the errors in Eqs. (10.3) and (10.4).
There is an improvement by a factor two in the statistical errors, corresponding to
about four times more statistics. Unfortunately, there was limited improvement
in the systematic uncertainties. The two scalar polarizabilities are very sensitive
to even small changes in the data, in particular to the overall scaling of the whole
dataset. Therefore, this method of accounting for the correlated systematic errors
by scaling all the datasets and checking the effects on the central values of αE1 and
βM1 may not be the best one, since it can overestimate the systematic component
to the final error.

Alternatively, correlated systematic errors can be taken into account by intro-
ducing in the fit a scaling factor for each dataset to be treated as an additional free
parameter, and by changing consequently the χ2 function as shown in Eq. (10.2).
In this way, the fitter is free to scale the data to find the best χ2, giving a more
realistic estimate of the systematic errors. This is particularly useful when fit-
ting more than one dataset simultaneously, as in the case of the new data. This
approach was used to refit both TAPS and the new A2 data. The minimum χ2

was obtained for the TAPS data with the following polarizabilities:

with α + β = 13.8± 0.4 with α + β = free

αE1 = 12.38± 0.39± 0.59 αE1 = 11.17± 0.54± 1.03

βM1 = 1.39∓ 0.42∓ 0.51 βM1 = 1.33± 0.70± 0.24 (10.5)

Sσ = 0.975± 0.019 Sσ = 0.981± 0.023

χ2
red = 81.50/63 = 1.29 χ2

red = 81.45/62 = 1.31,

where Sσ is the scaling factor applied to the data. The fits to the new data with
the inclusions of the scaling factor resulted in

with α + β = 13.8± 0.4 with α + β = free

αE1 = 11.08± 0.17± 0.45 αE1 = 11.76± 0.18± 0.63

βM1 = 3.10∓ 0.23∓ 0.24 βM1 = 3.01± 0.26± 0.22

SσM
= 1.014± 0.015 SσM

= 0.997± 0.019 (10.6)

SσJ
= 1.023± 0.015 SσJ

= 1.005± 0.019

SΣM
= 1.006± 0.019 SΣM

= 1.000± 0.019

SΣJ
= 0.988± 0.019 SΣJ

= 0.983± 0.019

χ2
red = 151.59/187 = 0.81 χ2

red = 149.07/186 = 0.80,
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Table 10.1: Scalar polarizabilities extracted by fitting the new data using the
HDPV DR code [40, 41]. When given, the errors are statistical and systematic,
respectively. The spin polarizabilities were fixed or constrained to the values in
Eq. (10.7), when their values are reported without and with the errors, respec-
tively. SσM

, SΣM
, SσJ

, and SΣJ
are the scaling factors for the March and July

2018 datasets, for the unpolarized cross-section and the beam asymmetry points,
respectively. The scalar and spin polarizability values are in units of 10−4 fm3

and 10−4 fm4, respectively.

αE1 + βM1 13.8± 0.4 Free 13.8± 0.4 Free
γ Fixed Fixed Constrained Constrained
α 11.25 ± 0.16 ± 0.41 11.76 ± 0.17 ± 0.58 11.30 ± 0.30 ± 0.41 12.08 ± 0.33 ± 0.58
β 2.84 ∓ 0.21 ∓ 0.21 2.80 ± 0.24 ± 0.18 2.91 ∓ 0.34 ∓ 0.28 3.10 ± 0.41 ± 0.21
γE1 -2.87 -2.87 -2.99 ± 0.50 -2.81 ± 0.51
γM1 2.7 2.7 2.99 ± 0.32 3.14 ± 0.32
γM2 -0.85 -0.85 -0.72 ± 0.64 -0.35 ± 0.67
γE2 2.04 2.04 1.76 ± 0.39 1.75 ± 0.39
SσM

1.005 ± 0.015 0.991 ± 0.018 1.012 ± 0.016 0.995 ± 0.019
SσJ

1.014 ± 0.015 1.000 ± 0.018 1.022 ± 0.016 1.004 ± 0.019
SΣM

1.008 ± 0.019 1.004 ± 0.019 1.006 ± 0.019 0.998 ± 0.020
SΣJ

0.989 ± 0.019 0.986 ± 0.019 0.988 ± 0.019 0.981 ± 0.020
χ2/DOF 153.56/187 = 0.821 152.15/186 = 0.818 151.54/187 = 0.810 148.08/186 = 0.796

where SσM(J)
and SΣM(J)

are the scaling factors applied to the unpolarized cross-
section and the beam asymmetry results obtained using the March (July) 2018
data, respectively. In both Eqs. (10.5) and (10.6) the errors on the polarizabili-
ties are statistical and systematic, respectively. The latter are calculated as the
squared difference between the final error reported by the fitter with and without
the scaling factor. Comparing Eqs. (10.4) and (10.6), the central values were
slightly changed by the introduction of the scaling factors, because the four new
parameters changed the χ2 distribution. It is interesting that the final values
of the scaling factors reported in Eqs. (10.4) and (10.6) are always smaller than
the input ones, 3% and 5/

√
3% for the unpolarized cross-section and the beam

asymmetry, respectively. This could indicate that the various systematic effects
are more accurate than the estimated precision, and it is reflected in the smaller
systematic uncertainties in the final values of αE1 and βM1.

Taken all together, these first analyses on the new A2 Collaboration data
show a big statistical improvement compared to the TAPS data, together with
a clear understanding of the systematic uncertainties whose final effects on the
experimental points may be slightly overestimated.
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10.2 Data fitting with HDPV DR model

The fits described in the previous section were useful to directly compare the new
data with the already published one. Nevertheless, the L’vov code does not allow
for the fit and the control of each single spin polarizability. They are parameters
that enter at the third order in the energy expansion of the Compton scattering
effective Hamiltonian, and even though they start to significantly affect the cross-
section only for beam energies above the pion photoproduction threshold, they
can still play a role in the fitting of low-energy data. For this reason, the new
data were fitted using more recent and complete models, within both DR and
BχPT frameworks.

The fits described in this section were performed using a fixed-t dispersion
relation code provided by Barbara Pasquini [40, 41]. As with the L’vov model
used before, it can take the polarizabilities αE1, βM1, and γπ as input. However,
it can also take the individual spin polarizabilities as input, permitting the fitter
to fix them (zero error), or allow them to vary within a constraint (non-zero
error), or allow them to vary freely (no error). For all the fits described from now
on, the spin polarizabilities were set to be equal to the most recent experimental
values published by the A2 Collaboration [19]:

γE1E1 = − 2.87± 0.52

γM1M1 = 2.70± 0.43 (10.7)

γE1M2 = −0.85± 0.72

γM1E2 = 2.04± 0.43,

where the errors were used to constrain the four parameters in the fit.

The first fits were performed combining all the new datasets, for a total of
192 points. The fits were performed both with and without the Baldin sum rule
constraint and the spin polarizabilities were either fixed or allowed to vary within
their experimental errors. The results are reported in Table 10.1. A few prelim-
inary observations can be made from this analysis. There is a big improvement
(of almost a factor of three) in both statistical and systematic errors compared
to the previously published experimental extractions of the scalar polarizabilities
summarized in Table 3.1. It is also interesting to note that the central values
of αE1 and βM1 do not change significantly when the spin polarizabilities are
allowed to vary within their experimental errors. This is an indication that the
new datasets presented in this work are well suited for the study of the scalar
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Figure 10.1: Comparison of the scalar polarizabilities extracted by fitting differ-
ent combinations of the new data using a DR model [40, 41]. “Mar” and “Jul”
correspond to the fits using only March or July 2018 dataset, respectively. dσ and
Σ3 correspond to the fits using only the unpolarized cross-section or the the beam
asymmetry points, respectively. “All” indicates the results using all the new data.
The fits were performed with the Baldin sum rule constraint αE1 + βM1 = 13.8
and the spin polarizabilities were fixed at the values in Eq. (10.7). The light green
band shows the polarizability value quoted by the PDG [55].
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Table 10.2: Scalar polarizabilities extracted by fitting March and July 2018
datasets separately, using the HDPV DR code [40, 41]. When given, the errors
are statistical and systematic, respectively. The spin polarizabilities were fixed
to the values in Eq. (10.7). Sσ, SΣ are the scaling factors for the unpolarized
cross-section and the beam asymmetry points, respectively. The scalar and spin
polarizability values are in units of 10−4 fm3 and 10−4 fm4, respectively.

αE1 + βM1 13.8± 0.4 Free 13.8± 0.4 Free
Beamtime March March July July
α 10.96 ± 0.22 ± 0.51 11.84 ± 0.25 ± 0.83 11.30 ± 0.22 ± 0.51 11.68 ± 0.25 ± 0.83
β 3.08 ∓ 0.27 ∓ 0.32 3.01 ± 0.34 ± 0.26 2.62 ∓ 0.27 ∓ 0.32 2.60 ± 0.34 ± 0.25
γE1 -2.87 -2.87 -2.87 -2.87
γM1 2.7 2.7 2.7 2.7
γM2 -0.85 -0.85 -0.85 -0.85
γE2 2.04 2.04 2.04 2.04
Sσ 1.014 ± 0.018 0.990 ± 0.025 1.012 ± 0.018 1.002 ± 0.025
SΣ 1.010 ± 0.019 1.002 ± 0.020 0.991 ± 0.019 0.988 ± 0.020
χ2/DOF 83.03/93 = 0.893 81.40/92 = 0.885 70.16/93 = 0.754 69.82/92 = 0.759

Table 10.3: Scalar polarizabilities extracted by fitting the unpolarized cross-
section and the beam asymmetry separately, using the HDPV DR code [40, 41].
When given, the errors are statistical and systematic, respectively. The spin
polarizabilities were fixed to the values in Eq. (10.7). SM , SJ are the scaling
factors for the March and July 2018 datasets, respectively. The scalar and spin
polarizability values are in units of 10−4 fm3 and 10−4 fm4, respectively.

αE1 + βM1 13.8± 0.4 Free 13.8± 0.4 Free
Observable dσ/dΩ dσ/dΩ Σ3 Σ3

α 11.22 ± 0.16 ± 0.43 11.78 ± 0.18 ± 0.62 11.32 ± 1.04 ± 0.56 11.80 ± 1.29 ± 1.30
β 2.86 ∓ 0.21 ∓ 0.23 2.82 ± 0.31 ± 0.18 2.51 ∓ 1.01 ∓ 0.48 2.51 ± 1.07 ± 0.33
γE1 -2.87 -2.87 -2.87 -2.87
γM1 2.7 2.7 2.7 2.7
γM2 -0.85 -0.85 -0.85 -0.85
γE2 2.04 2.04 2.04 2.04
SM 1.006 ± 0.015 0.991 ± 0.019 1.008 ± 0.020 1.004 ± 0.023
SJ 1.015 ± 0.015 1.000 ± 0.019 0.991 ± 0.020 0.987 ± 0.023
χ2/DOF 101.03/117 = 0.864 99.63/116 = 0.859 52.53/69 = 0.761 52.42/68 = 0.771

polarizabilities without much interference from higher order terms.
Instead of fitting all the new data together, the scalar polarizabilities were

also extracted from various combinations of the new datasets. These analyses
were performed keeping the values of the spin polarizabilities fixed to reduce the
number of parameters in the fit. This was particularly useful for the fitting of the
beam asymmetry data alone, since there are fewer points with larger statistical
errors compared to the cross-section data. The results are reported in Tables 10.2
and 10.3. In the first one, the data of the two beamtimes were fit separately.
Each fit includes 60 unpolarized cross-section and 36 beam asymmetry points.
It is interesting to note that, although the results are in agreement within one
sigma, βM1 extracted from the March 2018 data is higher compared to the results
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from July 2018. Also, the results from the latter are almost independent from the
αE1 + βM1 constraint, while this is not true for the former in which the central
value of αE1 shifted to a higher value when the Baldin sum rule is not considered.
A possible cause for this small difference in the results could be the difference
in the empty target samples collected during the two beamtimes, as explained in
Section 8.1.4. Even though a systematic shift in the two results was not observed,
due to the high sensitivity of αE1 and βM1 to variations in the unpolarized cross-
section, even small fluctuations in the results can cause noticeable changes in the
extracted polarizabilities.

Table 10.3 shows the results obtained by fitting the two observables indepen-
dently. All the results obtained are in good agreement among themselves. As
expected, the results of the fit to the beam asymmetry data alone have much
higher errors. Comparing the first two columns in Tables 10.1 and 10.3, it can
be noted how the results are almost unaffected by the inclusion of the beam
asymmetry points in the fit.

Fig. 10.1 shows a comparison between the scalar polarizabilities extracted
using all the new data, the two beamtimes separately, or the two observables
separately. All the fits were performed with the Baldin sum rule constraint and
the spin polarizabilities were fixed to the values in Eq. (10.7).

10.3 Data fitting with BχPT model

The new data were also fitted using the BχPT code from Vadim Lensky and
Vladimir Pascalutsa [47]. The same constraints as in the previous HDPV fits were
used. The fits were performed using all the new data, for a total of 192 points.
The results are reported in Table 10.4. Similar observations can be made as for
the HDPV fits. Also in these cases, the values of αE1 and βM1 seem to be almost
independent on whether the spin polarizabilities are fixed or just constrained. The
errors on the scalar polarizabilities are practically identical to the ones obtained
from the HDPV fits, but the central values of the magnetic polarizability are
systematically higher in this case. This is not unexpected considering that in
all the analyses published previously, there is always a discrepancy between the
results obtained within DR and BχPT frameworks. Nevertheless, this difference
can be thought of as a model-dependent uncertainty on the final results. Fig. 10.2
shows a comparison between the scalar polarizabilities extracted using the two
different models, with the spin polarizabilities fixed at the values in Eq. (10.7).

Fits of the separate datasets were also performed with the BχPT code. The



196 10. Results and discussion

8 9 10 11 12 13 14
]3 fm-4 [10E1α

Const

Free

Const

Free
M

1
β+

E
1

α

(a) αE1.

0 1 2 3 4 5
]3 fm-4 [10

E1
β

Const

Free

Const

Free

M
1

β+
E

1
α

(b) βM1.

Figure 10.2: Comparison of the scalar polarizabilities extracted using DR [40,41]
and BχPT [47] in red and light blue, respectively. The first and third points were
obtained using the Baldin sum rule constraint αE1 + βM1 = 13.8, while in the
second and fourth the two scalar polarizabilities were free to vary. In all the fits
the spin polarizabilities were fixed at the values in Eq. (10.7). The light green
band shows the polarizability value quoted by the PDG [55].
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Table 10.4: Scalar polarizabilities extracted by fitting the new data using the
BχPT code [47]. When given, the errors are statistical and systematic, re-
spectively. The spin polarizabilities were fixed or constrained to the values in
Eq. (10.7), when their values are reported without and with the errors, respec-
tively. SσM

, SΣM
, SσJ

, and SΣJ
are the scaling factors for the March and July

2018 datasets, for the unpolarized cross-section and the beam asymmetry points,
respectively. The scalar and spin polarizability values are in units of 10−4 fm3

and 10−4 fm4, respectively.

αE1 + βM1 13.8± 0.4 Free 13.8± 0.4 Free
γ Fixed Fixed Constrained Constrained
α 10.66 ± 0.15 ± 0.41 11.11 ± 0.16 ± 0.59 10.79 ± 0.29 ± 0.42 11.58 ± 0.31 ± 0.59
β 3.40 ∓ 0.20 ∓ 0.22 3.37 ± 0.22 ± 0.20 3.41 ∓ 0.33 ∓ 0.27 3.57 ± 0.39 ± 0.22
γE1 -2.87 -2.87 -3.07 ± 0.50 -2.90 ± 0.51
γM1 2.7 2.7 3.09 ± 0.32 3.25 ± 0.32
γM2 -0.85 -0.85 -0.72 ± 0.65 -0.39 ± 0.67
γE2 2.04 2.04 1.80 ± 0.39 1.78 ± 0.38
SσM

1.008 ± 0.015 0.996 ± 0.018 1.016 ± 0.016 0.999 ± 0.019
SσJ

1.016 ± 0.015 1.004 ± 0.018 1.025 ± 0.016 1.008 ± 0.019
SΣM

1.012 ± 0.019 1.008 ± 0.019 1.009 ± 0.019 1.000 ± 0.020
SΣJ

0.995 ± 0.019 0.991 ± 0.019 0.982 ± 0.019 0.984 ± 0.020
χ2/DOF 154.64/187 = 0.83 153.72/186 = 0.83 151.86/187 = 0.81 148.50/186 = 0.80

results show the same behaviors observed in the HDPV fits, and no further fea-
tures were observed. For this reason, they are not reported in the thesis.





Chapter 11

Summary and outlook

The experiment described in this dissertation provides a new high-precision mea-
surements of the proton Compton scattering unpolarized differential cross-section
dσ/dΩ and beam asymmetry Σ3. It was performed at the MAMI tagged photon
facility using the A2 Collaboration experimental apparatus, in two beamtimes
conducted in March and July 2018. A linearly polarized photon beam with ener-
gies from 85 to 140 MeV impinged on a liquid hydrogen target and the scattered
photons were detected using the Crystal Ball/TAPS setup. The collected data
were thoroughly reconstructed, calibrated and analyzed to select the final sample
and to extract the two experimental observables. Particular effort was spent in
the analysis of the photon flux, described in Chapter 6, to reduce as much as
possible the systematic errors on the unpolarized cross-section data.

The obtained new results show a consistent improvement in statistics com-
pared to the previously published data on both the unpolarized cross-section and
the beam asymmetry below the pion photoproduction threshold, together with a
careful study of the systematic uncertainties. These new data were used to extract
the scalar polarizabilities in different conditions and by using two different theo-
retical approaches. The results are reported in Tables 10.1 to 10.4. The different
datasets composing the results of this thesis give very similar results, as shown
in Fig. 10.1. On the contrary, the extraction of the scalar polarizabilities — in
particular of βM1 — exhibits a model dependence, as evident from Fig. 10.2. The
best estimate of the central values for the two scalar polarizabilities was therefore
calculated as the weighted average between the two theories, and the difference
was used to estimate an additional error due to the model dependence. The best
values for the unconstrained extraction of the scalar polarizabilities from the new

199
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data are

αE1 = 11.43± 0.17± 0.59± 0.33 (11.1)

βM1 = 3.08± 0.24± 0.20± 0.28

where the errors are statistical, systematic and model dependent, respectively.
The extraction using the Baldin sum rule constraint αE1 + βM1 = 13.8 ± 0.4

results in

αE1 = 10.95± 0.16± 0.41± 0.30± 0.20

βM1 = 3.12∓ 0.20∓ 0.22± 0.28± 0.20 (11.2)

ραE1−βM1
= −0.71

where the additional error at the end comes from the Baldin sum rule. ραE1−βM1
is

the correlation coefficient between the two scalar polarizabilities given by the fit-
ter routine, and it was used to correctly draw the dark purple ellipse in Fig. 11.1.
Both the results in Eqs. (11.1) and (11.2) were obtained with the spin polariz-
abilities fixed to the values in Eq. (10.7).

Figure 11.1 shows the new scalar polarizability extractions in purple together
with some of the available results. The black circle shows the results from the
TAPS collaboration [67], the highest statistic dataset published up to now. The
improvement in the errors in the new data is clearly visible, proving the achieve-
ment of the main goal of the work described in this thesis. The light green circle
shows the polarizability values quoted by the PDG [55]. As previously explained
in Section 3.3.5, these values significantly changed in 2012 — both the central
values and the errors — due to the inclusion in the average of the fit results
obtained using HBChPT from McGovern et al. [52], without any new experimen-
tal dataset being published. The dark green circle is a full theoretical prediction
within BχPT [46], while the red and the blue circles are global extractions within
DR [11] and HBχPT [52]. The light gray and orange bands show the experimen-
tal results for αE1−βM1 from Zieger et al. [64] and the Baldin sum rule constraint
average [12], respectively.

Taken together, these tests show that the new A2 Collaboration data on the
proton Compton scattering presented in this thesis provide a new high-statistics
dataset perfectly suited for the extraction of the proton scalar polarizabilities.
From the preliminary fits performed using only these new data, it was possible
to achieve a level of precision which is comparable to the existing current global
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Figure 11.1: Results of αE1 vs βM1 for the proton, obtained from different ex-
periments and theories. The extractions from the new data are depicted in light
and dark purple full circles for the unconstrained and constrained fit, respectively.
The final values are reported in Eqs. (11.1) and (11.2). The light gray and orange
bands show the experimental results for αE1−βM1 from Zieger et al. [64] and the
Baldin sum rule constraint average [12], respectively. The black circle shows the
results of the unconstrained fit from the TAPS collaboration [67]. The dark green
curve is the BχPT prediction [46], the blue solid curve is the extraction within
HBχPT [52], and the solid red curve is the bootstrap-based fit using fixed-t sub-
tracted DRs [11]. The light green circle shows the scalar polarizabilities values
quoted by the PDG [55].
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extractions that combined all previous data. This indicates that these new results
can be crucial in resolving the ambiguities in these existing extractions.

Moreover, the work presented provides an important contribution to the ex-
perimental Compton scattering program at MAMI. These new results can be
used in combination with the already published ones on single and double spin
observables to additionally improve the knowledge of the values of the spin po-
larizabilities, obtaining the first combined extraction of all the six proton polar-
izabilities from experimental data measured at the MAMI facility, and achieving
a new important milestone in this program. However, to reach a satisfactory
level of precision in spin polarizabilities, new precise data on the double spin
polarizabilties in the ∆(1232) region are needed.

The A2 Collaboration has already planned to perform new measurements of
the Σ2x asymmetry. Unfortunately, the current level of precision is limited by the
energy range kinematically accessible using the current experimental apparatus.
To widen it, the detection of the recoil proton is needed in order to reconstruct
the full events and to suppress the background contamination. This can be done
by the use of an active polarized target that is currently under development. A
successful test with a prototype was performed in 2016 [142].

Beyond these planned improvements on the proton data, the A2 Collaboration
is also turning its focus onto studies of the polarizabilities for the neutrons, where
the existing information is extremely fragmentary and limited [36], using active
helium and active polarized deuterium targets in development [143].



Appendix A

Unpolarized cross-section values

A.1 March 2018

Table A.1: Unpolarized Compton scattering cross-section for ωγ = 86.3 −
98.2 MeV extracted using March 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
92.2 35.0 10.391 1.902 1.802 0.312
92.2 45.0 10.572 1.000 1.304 0.317
92.2 55.0 11.826 0.751 0.998 0.355
92.2 65.0 9.766 0.757 0.751 0.293
92.2 75.0 10.481 0.726 0.792 0.314
92.2 85.0 10.136 0.688 0.707 0.304
92.2 95.0 9.726 0.754 0.554 0.292
92.2 105.0 10.808 0.835 0.579 0.324
92.2 115.0 13.249 0.947 0.694 0.397
92.2 125.0 13.372 1.114 0.785 0.401
92.2 135.0 12.444 1.641 0.687 0.373
92.2 145.0 13.000 2.907 1.018 0.390

203
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Table A.2: Unpolarized Compton scattering cross-section for ωγ = 98.1 −
108.4 MeV extracted using March 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
103.2 35.0 14.133 1.519 1.714 0.424
103.2 45.0 8.879 0.776 0.679 0.266
103.2 55.0 10.037 0.586 0.673 0.301
103.2 65.0 10.482 0.588 0.565 0.314
103.2 75.0 9.700 0.565 0.458 0.291
103.2 85.0 10.813 0.533 0.417 0.324
103.2 95.0 10.424 0.587 0.449 0.313
103.2 105.0 11.288 0.639 0.325 0.339
103.2 115.0 13.657 0.714 0.261 0.410
103.2 125.0 13.885 0.846 0.018 0.417
103.2 135.0 12.650 1.228 0.084 0.380
103.2 145.0 15.611 2.193 0.818 0.468

Table A.3: Unpolarized Compton scattering cross-section for ωγ = 108.5 −
118.7 MeV extracted using March 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
113.6 35.0 9.237 1.314 0.873 0.277
113.6 45.0 9.257 0.648 0.561 0.278
113.6 55.0 8.469 0.492 0.396 0.254
113.6 65.0 9.711 0.490 0.388 0.291
113.6 75.0 10.381 0.472 0.328 0.311
113.6 85.0 11.175 0.446 0.361 0.335
113.6 95.0 11.577 0.486 0.308 0.347
113.6 105.0 12.035 0.529 0.278 0.361
113.6 115.0 13.630 0.584 0.222 0.409
113.6 125.0 14.312 0.684 0.200 0.429
113.6 135.0 13.748 0.990 0.256 0.412
113.6 145.0 18.215 1.766 0.820 0.546
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Table A.4: Unpolarized Compton scattering cross-section for ωγ = 118.7 −
130.2 MeV extracted using March 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
124.1 35.0 8.192 1.120 0.404 0.246
124.1 45.0 7.975 0.537 0.265 0.239
124.1 55.0 8.411 0.412 0.193 0.252
124.1 65.0 9.454 0.408 0.145 0.284
124.1 75.0 10.201 0.390 0.158 0.306
124.1 85.0 10.439 0.367 0.148 0.313
124.1 95.0 12.510 0.403 0.129 0.375
124.1 105.0 13.668 0.435 0.076 0.410
124.1 115.0 14.383 0.471 0.092 0.431
124.1 125.0 15.358 0.550 0.132 0.461
124.1 135.0 15.923 0.787 0.072 0.478
124.1 145.0 17.879 1.414 0.131 0.536

Table A.5: Unpolarized Compton scattering cross-section for ωγ = 130.3 −
140.4 MeV extracted using March 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
135.3 35.0 6.589 1.168 0.265 0.198
135.3 45.0 7.534 0.549 0.179 0.226
135.3 55.0 7.561 0.425 0.110 0.227
135.3 65.0 9.798 0.421 0.093 0.294
135.3 75.0 10.645 0.399 0.135 0.319
135.3 85.0 11.256 0.377 0.096 0.338
135.3 95.0 12.021 0.407 0.082 0.361
135.3 105.0 14.004 0.444 0.090 0.420
135.3 115.0 15.194 0.477 0.103 0.456
135.3 125.0 16.426 0.553 0.067 0.493
135.3 135.0 16.672 0.785 0.107 0.500
135.3 145.0 15.843 1.421 0.089 0.475
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A.2 July 2018

Table A.6: Unpolarized Compton scattering cross-section for ωγ = 86.3 −
98.2 MeV extracted using July 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
92.2 35.0 12.629 1.840 2.175 0.379
92.2 45.0 12.012 1.002 1.468 0.360
92.2 55.0 11.972 0.756 1.008 0.359
92.2 65.0 10.606 0.720 0.804 0.318
92.2 75.0 11.124 0.719 0.832 0.334
92.2 85.0 10.076 0.695 0.703 0.302
92.2 95.0 11.590 0.744 0.620 0.348
92.2 105.0 13.252 0.817 0.651 0.398
92.2 115.0 12.033 0.939 0.648 0.361
92.2 125.0 13.975 1.117 0.810 0.419
92.2 135.0 16.956 1.605 0.809 0.509
92.2 145.0 15.948 2.828 1.201 0.478

Table A.7: Unpolarized Compton scattering cross-section for ωγ = 98.1 −
108.4 MeV extracted using July 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
103.2 35.0 9.139 1.476 1.109 0.274
103.2 45.0 10.550 0.776 0.807 0.317
103.2 55.0 9.564 0.586 0.642 0.287
103.2 65.0 9.715 0.557 0.524 0.291
103.2 75.0 10.412 0.556 0.491 0.312
103.2 85.0 10.148 0.535 0.392 0.304
103.2 95.0 9.582 0.576 0.413 0.287
103.2 105.0 11.716 0.623 0.337 0.351
103.2 115.0 13.080 0.706 0.250 0.392
103.2 125.0 15.988 0.835 0.021 0.480
103.2 135.0 16.059 1.196 0.108 0.482
103.2 145.0 13.152 2.121 0.689 0.395
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Table A.8: Unpolarized Compton scattering cross-section for ωγ = 108.5 −
118.7 MeV extracted using July 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
113.6 35.0 11.070 1.264 1.046 0.332
113.6 45.0 9.601 0.639 0.582 0.288
113.6 55.0 9.095 0.483 0.425 0.273
113.6 65.0 9.255 0.456 0.370 0.278
113.6 75.0 10.078 0.454 0.318 0.302
113.6 85.0 10.809 0.441 0.349 0.324
113.6 95.0 11.013 0.469 0.293 0.330
113.6 105.0 11.754 0.508 0.272 0.353
113.6 115.0 13.556 0.571 0.221 0.407
113.6 125.0 14.782 0.668 0.207 0.443
113.6 135.0 15.094 0.956 0.281 0.453
113.6 145.0 13.806 1.690 0.621 0.414

Table A.9: Unpolarized Compton scattering cross-section for ωγ = 118.7 −
130.3 MeV extracted using July 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
124.1 35.0 8.398 1.100 0.414 0.252
124.1 45.0 8.363 0.542 0.278 0.251
124.1 55.0 8.791 0.409 0.201 0.264
124.1 65.0 9.708 0.384 0.149 0.291
124.1 75.0 9.978 0.383 0.155 0.299
124.1 85.0 10.313 0.369 0.146 0.309
124.1 95.0 11.391 0.392 0.117 0.342
124.1 105.0 12.812 0.422 0.072 0.384
124.1 115.0 13.462 0.468 0.086 0.404
124.1 125.0 15.217 0.550 0.131 0.457
124.1 135.0 17.207 0.771 0.077 0.516
124.1 145.0 16.124 1.378 0.120 0.484
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Table A.10: Unpolarized Compton scattering cross-section for ωγ = 130.3 −
140.4 MeV extracted using July 2018 data.

ωγ

[MeV]
θγ′

[◦]

dσ

dΩ

[nb/sr]

∆

(
dσ

dΩ

)
(stat.)

[nb/sr]

∆

(
dσ

dΩ

)
(syst.)

[nb/sr]

∆

(
dσ

dΩ

)
(corr. 3%)

[nb/sr]
135.3 35.0 5.677 1.177 0.229 0.170
135.3 45.0 7.819 0.570 0.186 0.235
135.3 55.0 8.377 0.428 0.121 0.251
135.3 65.0 9.558 0.402 0.091 0.287
135.3 75.0 9.493 0.400 0.121 0.285
135.3 85.0 11.073 0.386 0.094 0.332
135.3 95.0 12.023 0.406 0.082 0.361
135.3 105.0 13.509 0.442 0.086 0.405
135.3 115.0 14.651 0.488 0.100 0.440
135.3 125.0 16.176 0.562 0.066 0.485
135.3 135.0 16.660 0.790 0.107 0.500
135.3 145.0 17.612 1.411 0.099 0.528
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Beam Asymmetry Σ3 values

B.1 March 2018

Table B.1: Compton scattering beam asymmetry Σ3 for ωγ = 86.3 − 98.2 MeV
extracted using March 2018 data.

ωγ [MeV] θγ′ [◦] Σ3 ∆Σ3(stat.) ∆Σ3(syst.) ∆Σ3(corr. 5/
√
3%)

92.2 35.0 -0.045 0.357 0.170 0.001
92.2 45.0 -0.373 0.307 0.119 0.011
92.2 55.0 -0.555 0.220 0.080 0.016
92.2 65.0 -0.419 0.244 0.071 0.012
92.2 75.0 -0.740 0.211 0.072 0.021
92.2 85.0 -0.619 0.201 0.066 0.018
92.2 95.0 -1.047 0.255 0.054 0.030
92.2 105.0 -0.886 0.222 0.047 0.026
92.2 115.0 -0.337 0.238 0.046 0.010
92.2 125.0 -0.483 0.264 0.052 0.014
92.2 135.0 0.040 0.303 0.221 0.001
92.2 145.0 -0.063 0.421 0.057 0.002
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Table B.2: Compton scattering beam asymmetry Σ3 for ωγ = 98.1− 118.7 MeV
extracted using March 2018 data.

ωγ [MeV] θγ′ [◦] Σ3 ∆Σ3(stat.) ∆Σ3(syst.) ∆Σ3(corr. 5/
√
3%)

108.5 35.0 -0.146 0.133 0.108 -0.004
108.5 45.0 -0.384 0.093 0.068 -0.011
108.5 55.0 -0.558 0.072 0.057 -0.016
108.5 65.0 -0.563 0.073 0.047 -0.016
108.5 75.0 -0.697 0.067 0.039 -0.020
108.5 85.0 -0.620 0.061 0.035 -0.018
108.5 95.0 -0.688 0.064 0.035 -0.020
108.5 105.0 -0.616 0.067 0.026 -0.018
108.5 115.0 -0.507 0.063 0.018 -0.015
108.5 125.0 -0.237 0.071 0.008 -0.007
108.5 135.0 -0.208 0.100 0.013 -0.006
108.5 145.0 -0.359 0.144 0.049 -0.010

Table B.3: Compton scattering beam asymmetry Σ3 for ωγ = 118.7− 140.4 MeV
extracted using March 2018 data.

ωγ [MeV] θγ′ [◦] Σ3 ∆Σ3(stat.) ∆Σ3(syst.) ∆Σ3(corr. 5/
√
3%)

129.5 35.0 -0.195 0.114 0.045 -0.006
129.5 45.0 -0.515 0.076 0.028 -0.015
129.5 55.0 -0.562 0.059 0.019 -0.016
129.5 65.0 -0.591 0.047 0.012 -0.017
129.5 75.0 -0.646 0.042 0.014 -0.019
129.5 85.0 -0.549 0.038 0.011 -0.016
129.5 95.0 -0.467 0.036 0.008 -0.013
129.5 105.0 -0.434 0.034 0.006 -0.013
129.5 115.0 -0.320 0.034 0.007 -0.009
129.5 125.0 -0.250 0.038 0.006 -0.007
129.5 135.0 -0.212 0.049 0.005 -0.006
129.5 145.0 -0.099 0.081 0.006 -0.003
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B.2 July 2018

Table B.4: Compton scattering beam asymmetry Σ3 for ωγ = 86.3 − 98.2 MeV
extracted using July 2018 data.

ωγ [MeV] θγ′ [◦] Σ3 ∆Σ3(stat.) ∆Σ3(syst.) ∆Σ3(corr. 5/
√
3%)

92.2 35.0 0.078 0.366 0.170 0.002
92.2 45.0 -0.688 0.251 0.120 -0.020
92.2 55.0 -0.572 0.201 0.081 -0.017
92.2 65.0 -0.864 0.220 0.074 -0.025
92.2 75.0 -1.129 0.225 0.076 -0.033
92.2 85.0 -0.761 0.214 0.067 -0.022
92.2 95.0 -0.871 0.221 0.051 -0.025
92.2 105.0 -0.564 0.198 0.042 -0.016
92.2 115.0 -0.894 0.234 0.052 -0.026
92.2 125.0 -0.279 0.266 0.050 -0.008
92.2 135.0 -0.268 0.309 0.038 -0.008
92.2 145.0 -0.081 0.490 0.069 -0.002

Table B.5: Compton scattering beam asymmetry Σ3 for ωγ = 98.1− 118.7 MeV
extracted using July 2018 data.

ωγ [MeV] θγ′ [◦] Σ3 ∆Σ3(stat.) ∆Σ3(syst.) ∆Σ3(corr. 5/
√
3%)

108.5 35.0 -0.369 0.130 0.108 -0.011
108.5 45.0 -0.514 0.090 0.068 -0.015
108.5 55.0 -0.438 0.075 0.057 -0.013
108.5 65.0 -0.729 0.073 0.047 -0.021
108.5 75.0 -0.733 0.066 0.039 -0.021
108.5 85.0 -0.756 0.066 0.035 -0.022
108.5 95.0 -0.746 0.071 0.035 -0.022
108.5 105.0 -0.602 0.061 0.026 -0.017
108.5 115.0 -0.408 0.063 0.018 -0.012
108.5 125.0 -0.230 0.066 0.008 -0.007
108.5 135.0 -0.265 0.081 0.013 -0.008
108.5 145.0 -0.057 0.150 0.049 -0.002
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Table B.6: Compton scattering beam asymmetry Σ3 for ωγ = 118.7− 140.4 MeV
extracted using July 2018 data.

ωγ [MeV] θγ′ [◦] Σ3 ∆Σ3(stat.) ∆Σ3(syst.) ∆Σ3(corr. 5/
√
3%)

129.5 35.0 0.000 0.121 0.045 0.000
129.5 45.0 -0.460 0.067 0.028 -0.013
129.5 55.0 -0.495 0.053 0.019 -0.014
129.5 65.0 -0.565 0.046 0.012 -0.016
129.5 75.0 -0.663 0.044 0.014 -0.019
129.5 85.0 -0.635 0.042 0.011 -0.018
129.5 95.0 -0.486 0.038 0.008 -0.014
129.5 105.0 -0.402 0.036 0.006 -0.012
129.5 115.0 -0.355 0.038 0.007 -0.010
129.5 125.0 -0.245 0.039 0.006 -0.007
129.5 135.0 -0.084 0.048 0.005 -0.002
129.5 145.0 -0.164 0.078 0.007 -0.005
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Figure C.1: Experimental asymmetry A(φγ′) for the incoming beam energy ωγ =
86.3 − 98.2 MeV using the March 2018 dataset. The distributions were fitted
using Eq. (9.11) and the results are shown within the plots.
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Figure C.2: Experimental asymmetry A(φγ′) for the incoming beam energy ωγ =
98.1 − 118.7 MeV using the March 2018 dataset. The distributions were fitted
using Eq. (9.11) and the results are shown within the plots.
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Figure C.3: Experimental asymmetry A(φγ′) for the incoming beam energy ωγ =
118.7 − 140.4 MeV using the March 2018 dataset. The distributions were fitted
using Eq. (9.11) and the results are shown within the plots.
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Figure C.4: Experimental asymmetry A(φγ′) for the incoming beam energy ωγ =
86.3− 98.2 MeV using the July 2018 dataset. The distributions were fitted using
Eq. (9.11) and the results are shown within the plots.
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Figure C.5: Experimental asymmetry A(φγ′) for the incoming beam energy ωγ =
98.1−118.7 MeV using the July 2018 dataset. The distributions were fitted using
Eq. (9.11) and the results are shown within the plots.
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Figure C.6: Experimental asymmetry A(φγ′) for the incoming beam energy ωγ =
118.7 − 140.4 MeV using the July 2018 dataset. The distributions were fitted
using Eq. (9.11) and the results are shown within the plots.
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