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Abstract

This thesis presents the first measurement of the d*(2380) (hexaquark) elec-
tromagnetic coupling, extracted from the deuteron photodisintegration (yd —
d* — 7p) reaction. The experiment was carried out at the Mainzer Microtron
(MAMI) facility in the Institut fiir Kernphysik in Mainz, Germany. A racetrack
microtron at the MAMI facility provided a 1557 MeV longitudinally polarised
electron beam. This electron beam was directed onto a thin radiator to produce
a bremsstrahlung photon beam. Diamond and amorphous (metallic) radiators
were used to produce linearly and circularly polarised photons respectively. The
produced bremsstrahlung photon beam was energy ‘tagged’ with a resolution
of ~4 MeV over the photon-energy range of 150-1400 MeV using the Glasgow
Photon Tagger. The tagged photons were incident on a 10 cm long liquid
deuterium target. This target was surrounded by a new nucleon recoil polarimeter
apparatus and placed within the Crystal Ball calorimeter at MAMI. An array of
PbWO, and BaF, detectors (TAPS) was used to provide calorimetry at forward
angles.

The newly constructed large acceptance recoil polarimeter measures the po-
larisation of the nucleons in the final state. The combination of this new
apparatus with the polarised photon beam facility gives access to a number of
single and double polarisation observables. The photon beam asymmetry, 3,
and the double polarisation observable, C,/, were examined in measurements of
the reaction d(7,7p) over a large range of energies with a close to full angular
coverage. The observable C,/ is determined for the neutron produced in deuteron
photodisintegration for the first time. The new data constrains mechanisms of
deuteron photodisintegration and assesses the existence and contribution of the
d*(2380) resonance.
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Lay Summary

Understanding the matter that makes up the universe around us has been a
subject of research throughout human history. It is only within the last century
that we have begun to develop a true understanding of this subject. We have
discovered that the world around us is comprised of atoms. Atoms themselves
consists of a dense, compact, positively charged nucleus that is surrounded
by negatively charged electrons. The atomic nucleus consists of two types of
particles, positively charged protons and electrically neutral neutrons. Protons
and neutrons are not fundamental particles, i.e. they are themselves formed of
other particles. We refer to the particles that make up protons and neutrons as
quarks.

Quarks are fundamental particles. Quarks interact with each other via the strong
nuclear force, one of the four fundamental forces of nature. The strong nuclear
force is difficult to understand and model theoretically. Our understanding of
this force primarily comes from experimentally measuring particle interactions
and examining the particles that are formed in these interactions.

Particles formed of quarks are referred to as hadrons. All of the well known
and measured hadrons discovered so far are formed of two quarks (referred to as
mesons) or three quarks (referred to as baryons). However, hadrons formed of
differing numbers of quarks are not forbidden by our theoretical models. In recent
years there have been a number of experiments that have claimed observation of
states formed of four quarks (tetraquarks), five quarks (pentaquarks) or six quarks
(hexaquarks).

One of these hexaquark states is known as the d*(2380). This state has been
observed and produced in various experiments utilising hadronic beams (i.e.
proton beams). Such experiments have revealed some of the properties of this
state such as its mass and how it decays into other particles. These measurements
do not provide any information on the size of this state or its structure (how the
quarks are arranged inside the object). Such properties can only be determined
from experiments that utilise beams of electromagnetic particles (electrons,
photons) to produce the state.

This thesis outlines the first dedicated experiment that utilises a photon beam
to produce the d*(2380). This experiment was carried out in August 2016 at
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the Mainz Microtron (MAMI) facility in Mainz, Germany. At this facility a high
energy electron beam is utilised to produce a beam of photons. These photons
are incident upon a target of liquid deuterium (a hydrogen atom with a proton
and a neutron in the nucleus). The particles produced when the photon beam
interacts with the target are measured by a detector array that surrounds the
target. These reaction particles are examined and experimental observables are
extracted.

v
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Chapter 1

Introduction

The family of particles known as hadrons includes the protons and neutrons that
make up the visible matter in the universe around us. Hadrons are complicated
objects formed of fundamental particles called quarks. Quarks experience all four
of the fundamental forces in the Standard Model. However, within hadrons it is
the strong nuclear force that plays by far the most important role. Quarks within
hadrons interact with each other through the strong nuclear force in interactions
that are mediated by gauge bosons known as gluons. Our best theoretical
model of the strong interaction postulates that the strong force interacts between

objects with “colour” charge. This theory is known as Quantum Chromodynamics

(QCD).

In QCD, quarks carry one of three colour charges and gluons carry one of these
three colours and one of three anti-colours. Under this theory only objects that
are ‘colour neutral’ can be observed. The meson, formed of a quark and an
anti-quark, and the baryon, formed of three quarks, are two such colour neutral
configurations of hadrons. QCD can be used to describe and make predictions for
strong-force interactions at high energy (perturbative regime) very successfully.
However, at low energies, where perturbative calculations cannot be performed,
theoretical predictions are hard to obtain. This is particularly problematic as this
low-energy regime contains the interactions that occur within nucleons. These
interactions are responsible for the vast majority of the overall mass of nucleons

(and consequently, the visible universe)[I], 2].

Recent advances in computing power and the development of theoretical tech-

niques such as Lattice QCD (LQCD) have improved the theoretical picture in



the low-energy regime however. Predictions of certain hadronic properties can
now be made to within a few % of the values observed in experiments. The
excitation spectra for hadrons can also be predicted. Such spectra can include
new classifications of hadrons with properties and configurations beyond those

which are currently known, the meson and the baryon.

QCD, as it is currently understood, does not forbid the existence of hadronic
states other than the meson and baryon. The requirement for a state to be
colour neutral can be achieved in numerous other ways. Combinations of any
number of quarks (other than 1) and anti-quarks can be made to be colour
neutral. A combination of gluons (a “glueball”) could also potentially form
a colour neutral object. Experimental searches for such objects are ongoing
and recent observations have discovered several interesting possibilities for new

hadronic states.

Recent experiments at LHCb, WASA-at-COSY, BELLE and elsewhere have
observed resonance structures with properties (e.g. spin-parity combinations)
that cannot be described by normal mesons or baryons. The interpretation of
the observed states is that they are states formed of four quarks (two of which
are anti-quarks), five quarks (one anti-quark) or six quarks. Such combinations
are often referred to as tetraquarks, pentaquarks and hexaquarks respectively.
Whether these observed states are truly single compact objects or are more like
‘molecular’ states is a subject of much debate. To answer this question these

states must be studied in more detail.

Of the observed states so far, the d*(2380) dibaryon state is perhaps the
state with the most well-defined properties. The mass, width and spin parity
of this state, as well as its branching ratio, have been determined from
measurements of numerous hadron induced reaction channels by the WASA-at-
COSY collaboration. However, these measurements do not provide information
on the size or structure of this state. Such properties can be determined using

electromagnetic probes. This thesis provides the first steps in this process.

The deuteron photodisintegration reaction vd — mnp is the simplest photon
induced reaction that may show sensitivity to the d*(2380). Previous spin
polarimetry measurements of the final state proton in this reaction have produced
intriguing hints of a resonance structure in a mass range very similar to that of
the d*(2380) observed at WASA. The d*(2380) could potentially be produced in

this reaction via an intermediate step, yd — d* — 7ip.



This thesis outlines new measurements of the deuteron photodisintegration
reaction (yd — 7ip) over a wide photon-energy range of 150-1400 MeV. The
polarisation observable ¥ is extracted in the photon-energy range 410-620 MeV
(v/s =~ 2249-2417 MeV) of interest to the d*(2380) dibaryon resonance. The
polarisation transfer observable, C/, is also studied in the photon-energy range
200-1000 MeV. This observable is determined for the neutron produced in
deuteron photodisintegration for the first time. These measurements constitute
the first dedicated study of the d*(2380) in a photon induced reaction. Studies of
observables for this reaction have been carried out on the proton but the neutron

has never been examined [3].

The measurements were carried out in August 2016 at the Mainzer Microtron
(MAMI) facility in Mainz, Germany [4]. The experiment utilised a new nucleon
polarimeter within the existing detector setup in the A2 hall at MAMI, which
comprises the Crystal Ball and TAPS detector arrays [5H7]. The setup provides
acceptance for charged and uncharged reaction products with close to a 4-7

coverage in solid angle.

The structure of this thesis is as follows; hadronic states in QCD are introduced in
Chapter 2, the formalism for the deuteron photodisintegration reaction examined
in this thesis is introduced in Chapter [3] Possibilities for new “exotic” hadron
states are reviewed in Chapter [d Chapter [ discusses the MAMI experimental
facility and Chapter [6] provides an overview of the design and construction of the
new polarimeter utilised in the experiment. Chapter [7]summarises the calibration
procedure for the detectors used in the experiment. The event selection and
analysis procedure is outlined in Chapter [§, along with a discussion of systematic
errors. Results are presented in Chapter[9] An initial attempt at interpreting the

results along with the conclusions of this body of work are contained in Chapter

1



Chapter 2

Hadrons in QCD

This chapter outlines our current understanding of the family of particles known
as hadrons. Hadrons are composite particles formed of quarks. The properties
and varieties of quarks, as well as how they combine to form hadrons, are discussed
in this chapter. There are two well known sub groupings of hadronic states:
mesons and baryons. This chapter will detail how to build, interpret and group
these states based upon their properties and quantum numbers. The theoretical
model used to understand strong-force interactions between quarks, Quantum
Chromodynamics (QCD), will also be outlined. Our models and theories do
not forbid hadronic states other than mesons and baryons; indeed many models
predict a plethora of other possibilities. These “exotic” states and the various

searches for them are discussed in Chapter [

2.1 Building Hadrons

Although hadrons are formed of quarks, free quarks have never been observed.
Their existence has been inferred from deep inelastic scattering measurements
[8,19] and from hadron spectroscopy [10]. The existence of quarks and their flavour
is supported by the fact that measurements of hadronic states carried out so far
generally match quark-model predictions quite well [IT]. This section discusses
the quantum numbers and properties of quarks and how they are arranged to

form meson and baryon states.



2.1.1 Quarks

The quark model was introduced in 1964 by Gell-Mann [12] and by Zweig
independently [13], [14](although Zweig refers to them as “aces”). The model
was formulated in order to group the hadrons observed up to that point and to
understand their properties. Today the quark model consists of six flavours of
quark. These flavours are the down, up, strange, charm, bottom and top. The

properties of these six quarks are summarised in Table [2.1]

The properties of hadrons are related to their internal quark content. In the case
of many of the quantities (electrical charge ), baryon number B#, isospin I3
(discussed in Section [2.1.3)), strangeness S, charm C, bottomness - or “beauty”,
B and topness - or “truth”, T') the properties of hadrons are simply a linear
combination of the values of their constituent quarks. The spin, J, of the hadron is
more complicated as it depends upon the orientation (up or down) of each quark.

However, for a state of three quarks it is easy to infer that the magnitude of the
3
2
(all up or down). The mass of a hadronic state however is far more complicated;

total spin in the ground state can be either % (two up one down or vice versa) or

(discussed further in Section it is not simply a linear combination of its
constituent quark masses. The listed quark masses are only the inferred masses
of the lone quarks (sometimes referred to as the “valence” quark mass). Hadronic
states are typically characterised by their mass and spin-parity, J© (or J7). J is
the overall value of the spin and P is the parity of the hadron wave function. This
quantity is either positive (+1) or negative (-1). For hadrons that are eigenstates
of C-Parity (charge conjugation) the state may be listed with its spin, parity and

charge conjugation as J7¢.

2.1.2 Grouping States

Hadrons are generally classified as mesons or baryons. Mesons are states formed
of a quark and an anti-quark, as baryon number is inverted for anti-quarks this
leads to a hadron with B# = 0. Baryons are formed of three quarks (or three
anti-quarks for anti-baryons) and as such have B# = 1 (-1 for anti-baryons).
Sets of hadrons with the same baryon number, spin and parity can be arranged
into multiplets. This is relatively straightforward for states consisting only of w,
d and s quarks but rapidly becomes more complicated when systems that include

¢ or b quarks are also considered. Example multiplets (formed from only u, d or



Table 2.1 Quark Properties

Flavour ~ Mass (MeV/c?) J B# Q I S C B T
1.5-3.3 : s 2 3 0 0 0 0

4.1-5.7 3 5 -3 -3 0.0 0 0

s 100 z i 3 0 -1 0 0 0

c 1290 3 : 2 0 0 1 0 0

b 4200 z i -3 0 0 0 -1 0

t 172900 1 s 2.0 0 0 0 1

s quarks) for spin % and spin % baryons are shown in Figures and . The
three “axes” of the multiplets are the strangeness, charge and I3 values of the

state.

2.1.3 Isospin

Within groups of hadrons with the same J, P, S, C' and B quantum numbers
but differing values of ) the masses of the hadrons tend to be very similar. For
example, the proton and the neutron both have J™ = %Jr and masses of m;, ~
938 MeV/c? and m, ~ 939.6 MeV/c? but differing charges (+1 and 0). The
quark content of the proton is uud and the neutron is udd. The similar mass but
differing quark content leads to the assumption of a “symmetry” between the u
and d quarks. This symmetry is referred to as “isospin” symmetry and has a new
associated quantum number, /. Using this new quantum number the proton and
the neutron can be treated as being the same particle but in different states of

isospin.

This isospin symmetry requires the introduction of more quantum numbers
beyond I. Isospin is a vector quantity, the third component of the isospin, I3

can take values in the range

L=11—-1,. —1. (2.1)
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In analogy to angular momentum in quantum mechanics I3 is similar to m;, the
value of I3 can be calculated from the electrical charge, (), of the state and a new

quantity, the hypercharge Y, via

Y =B#+S+C+B+T (2.2)

The quantities I, I3 and Y are all conserved in strong force interactions. The
hypercharge, Y, for the proton and neutron is 1 and I3 = % for the proton and

I3 = —3 for the neutron, with / = 1 in both cases.

2.1.4 lIssues

The quark model as introduced in 1964 was successful in explaining observed
patterns in states from the early period of experiments. It was also successfully
used to predict the existence of states such as the {2~ baryon [17]. However, this
baryon, formed of three strange quarks with all their spins aligned, highlights an
issue with the quark model. As quarks are fermions, a state of three identical
quarks with spins aligned would violate the Pauli exclusion principle. The
observation of the Q= (sss), A™ (uuu) and A~ (ddd), J™ = %+, states implied
that something was missing from the model.

Greenberg rectified this issue by proposing that quarks are parafermions of order
three [I§]. This implies that quarks can exist in one of three different states, later
referred to as colour states. The implication is that in a baryon, each quark has
one of three colour states (red, green or blue) and combine together to form an
overall colour-neutral object. Similarly, for mesons the quark carries one colour
and the anti-quark carries the corresponding anti-colour; again forming a colour-
neutral object. The idea that only colour-neutral objects can be observed is
known as confinement. Confinement implies that colour-charged objects cannot
be observed, as such individual free quarks are not observable. This phenomenon
is one of the key properties of the theoretical model that dictates the strong-force

interaction between colour-charged objects, Quantum Chromodynamics (QCD).



2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a theory of the strong nuclear force that
governs interactions between colour-charged objects, such as quarks. These
interactions are mediated by the gluon, a massless spin-1 boson with no electrical
charge. However, gluons carry a colour charge and an anti-colour charge. This
property has significant consequences for the strong interaction. As gluons carry
colour charge they can interact with themselves via the strong force. This is
in stark contrast to the uncharged photons that mediate electromagnetic (EM)
interactions between electrically charged objects. It is actually this property of
self interaction and the strength of QCD itself that leads to the vast majority
of the mass of hadrons, and as such the majority of visible mass in the universe
[1, 2]. This is why the mass of hadrons is not simply the sum of the masses of
the individual valence quarks. For example the free (or valence) quarks within
the proton add up to only ~1% of its total mass. The rest stems from the energy

of the strong-force interactions.

In addition to this, there are two key features of QCD. One of these features,
confinement, has already been discussed. The second feature is known as
asymptotic freedom. The strong coupling constant, ay, is a measure of the
strength of the strong nuclear force. The value of a; is not constant and varies
depending upon the energy scale of the interaction. As seen in Figure [2.3]
the coupling constant reduces in strength with increasing energy. In the high-
energy region the coupling constant is relatively small and shows a much weaker
dependence on energy. This is the region of “asymptotic freedom”. Quarks

behave as though they are free in this region.

The trend seen in Figure [2.3| can also be considered in terms of distance scales
if the graph is reflected, i.e. the coupling constant is strong (and increases in
strength) at long distances but is weaker over short distances. When considering
the variation this way, the property of confinement becomes clear; if a pair of
quarks was to be separated, the binding energy between them would increase
as the distance between them increases. Eventually it will become energetically
favourable to produce a new quark anti-quark pair from the vacuum rather than

isolate one of the quarks in the initial pair.

Due to the variation of ag, QCD calculations fall into two distinct regimes. At

high energy (short distances), in the asymptotic freedom regime, the coupling
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is sufficiently weak to allow perturbative calculations to be performed. At low
energies (long distances) such calculations are not possible. This non-perturbative
regime requires the application of novel computational methods, simplifications
to the model or a combination of both. It is somewhat unfortunate that it is
within this non-perturbative regime that the majority of the interactions that

influence the world (and universe) around us occur.

2.2.1 Non-Perturbative QCD Methods

In the non-perturbative regime at low energies (Q < 1 GeV) a full analytical QCD
solution is not possible. Instead approximate solutions must be applied. One
potential approach is Chiral Perturbation Theory (ChPT) [2, 20]. In ChPT an
effective Lagrangian is formulated based on symmetries and symmetry breaking
patterns in QCD. Taylor series can be extracted from this Lagrangian and solved
perturbatively to produce matrix elements and scattering amplitudes. This
effective Lagrangian is made to be chirally symmetric by treating the quarks
involved as being massless and splitting them into two helicities, parallel and
anti-parallel to the momentum. The expansion at low energies is generally done
in terms of mL;, for calculations at high energy the expansion is in terms of a.
In the region between the high and low energy regimes this expansion is very
difficult. Nonetheless ChPT is a useful theoretical approach for describing some

interactions such as 77 and 7N [20].

Another technique for solving problems in the non-perturbative regime is
Lattice QCD (LQCD). This technique was first introduced by Wilson in 1974
[21]. In LQCD, problems are formulated on a lattice of points in space and
time. The points are separated by a fixed finite distance, a, in an overall
volume, V. Quarks are positioned at the points of the lattice and gluons
propagate as the “links” between these lattice points. QCD interactions in this
model can be numerically solved via Monte Carlo computing methods to make
predictions. Such computations are very intensive however and require the use of
supercomputing resources. Due to the intensity of these computations, they are
also typically carried out using unrealistically large quark masses that simplify the
calculation. Nevertheless, such calculations are a very useful and have been used
to accurately predict the masses of light hadrons to within a few % [22]. LQCD
can also be used to make predictions of meson and baryon excitation spectra

[23, 24]. With the ongoing increase in computing power available, predictions
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from LQCD will only become more and more accurate in the future. Also, such
advances may be expected to enable larger lattice sizes to be simulated that will

allow more extended reaction processes and particles to be studied.

2.3 Studying Hadronic States

Hadronic states are often studied by carrying out scattering experiments. In
such experiments a beam (electrons, photons, other nucleons) is incident upon a
target. The incident wave (particle in beam) can be treated as being a plane wave.
Once scattered by the potential, the outgoing wave is represented as a spherical
wave front. The incoming plane wave can be re-expressed as a superposition of

spherical waves given by

Yine = Ae™* = A "i(20+ 1) (kr) P(cos(6)), (2.4)

=0

where j;(kr) are spherical Bessel functions and Pj(cos(f)) are Legendre Poly-
nomials. This expression of the plane wave is the “partial wave expansion”.
The resulting set of partial waves, each corresponding to a specific value of the
angular momentum, [, are each weighted by (2] + 1) with a phase factor i'. At
large distances from the scattering potential the Bessel functions simplify, such
that Equation can be expressed as

. o0 pilkr—1%)
ezkz o zkr cos(f) le 21 +1 Pl COS(@))
=0

_ milkr—13)

kr

(2.5)

With such an expression, each partial wave can be considered as the superposition

of two partial waves, e/*7={3) —i(kr—13)

representing the outgoing wave and e
representing the incoming wave. A scattering process can be modelled by
introducing a phase to multiply the outgoing part of the wave. For purely elastic

scattering this phase has the form
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Sy(k) = (2.6)

where ¢; is the phase shift. For purely elastic scattering the flux of incident
and scattered particles is conserved. To extend this result to inelastic scattering
a complex “elasticity” term, n;(k) must be introduced and utilised rather than
the expression given in Equation ([2.6)). For elastic scattering the phase shifts are
real whereas in inelastic scattering the phase shifts are complex with the real part
corresponding to elastic scattering and the imaginary component corresponding to
absorption /inelastic processes. The scattering amplitude for the inelastic process

can be expressed as

00 2i81[] _
10 = et (M=) Rosto), 2.7)

where the amplitude of a given partial wave is given by

1T = (W) : (2.8)

This partial wave amplitude, 77, is a complex quantity. In an interaction, it is this
component that should be measured as it provides information about the mass
and width of any resonance states decaying with this given partial wave. The
presence of a resonance in a given partial wave channel can most easily be seen
by examining the motion of this partial wave amplitude on an argand diagram
(plotting the real vs imaginary part of the amplitude) as the energy of the reaction
is altered. If a resonance is present such a plot should follow a close to circular
path [25].
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Chapter 3

Observables in Deuteron

Photodisintegration

3.1 Definition of Frames

The deuteron photodisintegration reaction, vd — pn, can be depicted in the lab
and centre of mass frames as shown in Figure Deuteron photodisintegration
reactions, where one of the nucleons subsequently undergoes a scattering
interaction in some analysing material, may consider polarisation components
in a new scattered frame defined by the axes x’, ¥’ and z’. When considering,
for example, a neutron undergoing a secondary scattering interaction the axes of

this frame are defined by

|N\>
|

|3
w
—_

~~ o~
'OJ
w
~—

o
¥
!

X X
ST
w
[\

|Q\> |‘Q>

where n, 4 and p are the neutron, photon and proton (the proton from the initial
reaction that is assumed to be unscattered) three-vectors respectively [26]. The
polar and azimuthal angles in the (2, 3/, 2’) frame, 5. and ¢g., of the recoil

particle, p/, can be determined as in Figure[3.2] These angles are utilised to form
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Figure 3.1 The kinematics of the reaction yd — pn as depicted in the lab (top)
and centre of mass (bottom) frames [27]. The unprimed azxes, x, y
and z are defined such that the z axis is along the photon beam line

and the x axis is parallel to the laboratory floor.

asymmetries through which some polarisation observables can be determined.
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Figure 3.2 Neutron, n, undergoing a charge exchange interaction with a carbon

nucleus in the (x’, y’, z’) frame as defined by Equations
. The angles Os. and ¢s. for the recoiling proton, p’, are shown
(modified version of [28]).
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Table 3.1 Formulae for polarisation observables in deuteron photodisintegration
[3]. How the terms Fy relate to the helicity amplitudes are defined

in Table .

Observable Helicity Amplitude Combination
Dy 23 Z? 1[ Fi Flips)— + Fio F(t+3)+]
T 25 Zz 1 Z; 0[ (i+35)+ F(*z+3j+1) + Flivs))— F(7+3j+1)—]
by 2R 1( V' [=Fi Fly iy + Faror
T 2\92 (=)= Z+F(* oy T F-FG ]
Cy 2R Zz 1[ 2+3) + szF(H-s)-g-]
Gy > 1{IE+\2 |Fi|*}
Oy 23 Zz (= ) F(*7 ot T E—F(* —i)— ]
0./ 233, (- Fop iy + Favp+ Py ]

3.2 Polarisation Observables in Deuteron

Photodisintegration

Polarisation observables in deuteron photodisintegration differ from those in
photon-nucleon (yN) interactions (see Appendix|[C]). The differential cross section

for the process yd — pn can be expressed as [3]

d .
(—) 1+ py Py + pyT phn(E + p, 1) cos(2¢) + pgn(Ox/px, + O,p.) sin(2¢)
0

+0S (Corpar + Corpar)]

(3.4)
where (j—g) is the differential cross section for unpolarised photons; p‘; and pév
are the polarisations of the deuteron target and outgoing nucleon; phn and p? are
the degrees of linear and circular polarisation of the photon beam and p; is the
direction of the polarisation of the outgoing particle with respect to the z’, ¥ or
2" axes. The other quantities in this equation are the polarisation observables,

these observables are formulated in terms of their helicity amplitude components

in Table Bl

The observables p,, > and T are the single polarisation observables that

correspond to the induced proton (or neutron if the neutron is considered)
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Table 3.2 Relation between terms Fi+ and the helicity amplitudes [3, [29]. The
formalism is (\p, An|J - €x|Aa) where \; is the helicity of particle i, J
is the angular momentum operator and ey is the photon spin.

F Representation Amplitude
Fi (EL L1 - e])
Foy (£3. %31 - €4[0)
Fsy <i%7i%|J‘€+|_1>
Fyy (£5: F3lJ et [D)
Fry (£3: F317 - €4 ]0)
Fir ELFNT ol - 1)

polarisation, the linearly polarised photon beam asymmetry and the target
asymmetry respectively. The quantities T, O, , and C, . are the double
polarisation observables. Tj is the asymmetry of the recoil proton polarisation
from a linearly polarised photon beam. O, . and C, . are the components of
the recoil proton polarisation (in the 2’ or 2’ plane depending upon subscript)

from linear (O, /) and circularly (C, ./) polarised beams.

3.3 Experimental Determination of X

Polarisation observables can be determined experimentally by examining asym-
metries. The method by which the observable Y can be determined in this
manner is outlined in an analysis note for the CLAS collaboration at Jefferson Lab
[30]. The polarized differential cross section for reactions initiated by a linearly

polarised photon beam is given by

do do :
— = (—=) (1+p"Scos(2 :
where (g—g) o 1s the unpolarised differential cross section, pgn is the degree of

photon linear polarisation, ¥ is the beam-spin asymmetry observable and [ is
the angle between the photon polarization vector and the reaction plane. 3 can
be expressed in terms of the angle ¢ and an angular offset, ¢y, which corresponds

to the offset of the photon polarisation from the z-axis, via the relation
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f=¢— o (3.6)

Y could in theory be extracted directly from Equation by fitting a cos(2/3)
function to the polarised differential cross section. However, doing so would
require that the acceptance is accurately determined. By combining linearly
polarised data with unpolarised data, the need to know the detector acceptance

can be eliminated. Equation ({3.5)) is proportional to the yield given by

N(¢) ~ F (1+ pi*Scos(28)) A(9), (3.7)

where F' is the incident photon flux and A(¢) is the detector acceptance as a
function of phi. The A(¢) term can be eliminated by taking a ratio of the yield

for the linearly polarised and unpolarised cases producing

(1+ pgnZ cos(20)) . (3.8)

2=

In Equation F and F* are the photon fluxes for the linearly polarised case
and the unpolarised case respectively. However, Equation is only valid
under the assumption that A(¢) is constant within each ¢ bin and that it does
not vary in time. 3 can also be determined without measuring unpolarised data.
By measuring two different photon linear polarisations orientated at 90° to each
other X can also be determined through asymmetries. The two polarisations
measured are typically referred to as parallel (para, ||) and perpendicular (perp,
1). The “parallel” axis is at 45° from ¢ = 0° and the “perp” axis is at 135°. The

yields for the para and perp cases are given by

N(¢)t ~ Flt (1 £ pl+Scos(2(¢ — ¢o))) A(9), (3.9)
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where FI+ is incident the incident photon flux and A(¢) is again the acceptance.
In this case ¢q is equal to 45°. By taking the ratio between linear combinations

of the polarised yields, ¥ can be determined. Specifically in the asymmetry:

_ N - N(9)*

(3.10)

the acceptance terms cancel out (under the same assumptions outlined previ-
ously). If the total yields are scaled (using the photon fluxes) such that they are

equal and under the assumption that the degree of linear polarisation in the para

lin
y

and perp case is equal (pl = p# = p2") then the ratio given in Equation (3.10)) is

equivalent to

N(o)! — N(¢)*
N(@)l+ N(o)*

= IS cos(2(6 — ). (3.11)

This results implies that by measuring the experimental yield (as a function of ¢)
for the para and perp case and constructing the asymmetry defined by Equation
then the observable > can be determined. Fitting the asymmetry with a
function of the form Pycos(2(¢ — ¢p)), % can be calculated simply by dividing

lin
Y
that the uncertainties, oy and oy1, follow a Poisson distribution they can be

the fit parameter Py with the degree of linear photon polarisation, p2". Assuming
expressed as oy = VNI and oy = VNL. From propagation of uncertainties
the statistical uncertainty, o4, on the asymmetry value, A, can be shown to be

given by

4= W\/MM(MI +NY). (3.12)

Care must be taken to ensure that yields, NIl and N+, are normalised correctly
and that the degree of polarisation is equivalent for each orientation. If this is
not the case the extraction of ¥ will be much more complicated as discussed in

[30]. The choice of the number of bins in ¢ is also important due to the crucial
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assumption that the acceptance is constant within ¢ bins. This may not be the
case in reality but this can be examined. The potential effect of the choice of ¢

binning on the final results for ¥ is discussed further in Section [8.3]

3.4 Experimental Determination of C,

In a similar manner to X, the recoil polarisation observable C,; can be determined
by forming and fitting asymmetries. When considering secondary scattering
of reaction products in some analysing material the azimuthal distribution of

secondary scattered particles takes the form

N<HSC7 ¢Sc) ~ NO(QSC) (1 + A(QSC) [py COS(¢SC) — Pz Sin(ngC)]) ) (313)

where Ny(fs.) is the number of detected particles that scattered with angle
Os. and A(fs.) is the analysing power at angle fs. (see Section [31), 32].
No(bse) depends upon the polarimeter acceptance, (fs, ¢sc), the total number
of scattered particles in the analysing material, Ns. and the acceptance of the
unscattered particles, K (6,, ¢p). This formalism is implying that the neutron, n,
from deuteron photodisintegration undergoes a charge exchange interaction to p’

and the proton, p, is not scattered. The relation between these terms is given by

NO(QSC) == Q(HSCﬂ CbSc)K(va ¢p)NSc- (314)

By measuring the yield across a range of s, and 6, the dependence upon the
polar angle can be integrated out. Combining Equations (3.13]) and (3.14)) yields

N(¢sc) = Nse (1 + Agg [py cos(¢se) — posin(gse)]) Qs K (dp), (3.15)

where Agg is the effective analysing power of the reaction (see Section [3.4.1). As

in the determination of X, the acceptance can be removed from the determination
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of C, by forming asymmetries. In the case of C; the asymmetry is in terms of

the beam helicity. The yield for a given helicity state (+ or —) is

Ni<¢8c) = NSc (1 + AEff [py COS(¢SC) + Dz Sin(QbSc)]) Q¢SCK<¢p)7 (316>

where for recoil particles produced with a circularly polarised photon beam (of

polarisation degree P), p, = PY’Cy and p = p,. Forming the asymmetry %

yields the relation

N= =Nt ApgP)Cy sin(ds)
N-+ N+ N 1+ AEffpy COS((bSC)'

(3.17)

Thus by forming asymmetries of the yield as a function of ¢sg., the observable C,

can be determined by fitting the asymmetries with a function of the form

P sin ¢g,

f(¢Sc) = m (318)

To extract values of C,/ from such a fit the effective analysing power, Agg, must

be determined.

3.4.1 Analysing Power

Interactions between pairs of nucleons (N-N interactions) are complex inter-
actions. The force between nucleons is a residual of the QCD colour force.
These interactions can be considered in analogy to van der Waals forces except
between quarks in the nucleons as they approach each other. The nuclear force is
strongly spin dependent [33]. In interactions where a polarised nucleon interacts
with another nucleon (polarised scattering interactions) the spin-orbit coupling
component of the nuclear force is particularly important. This terms couples

the angular momentum [ with the total spin of the nucleons, s. The potential
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Figure 3.3 A, for the elastic scattering reaction np — pn as a function of fs.
and E,. A colour scale for the value of Ay is included.

between the nucleons in such an interaction can be written as Vi, (r)(l - s)
where V,,(r) is a position dependent scalar. This spin-orbit term produces an
angular distribution of the scattered particles that is dependent upon their spin.
By examining the azimuthal distributions of the scattered particles information
about the polarisation of the incident nucleon can be inferred. This azimuthal
distribution can be shown to be the product of the initial polarisation and a

quantity, A,, referred to as the analysing power of the interaction [34].

This thesis considers interactions where polarised neutrons scatter from some
carbon analysing material. In this reaction the effective analysing power, Agg,
can be approximated from the determined values of the analysing power, A,,
from elastic np data [35]. A,(E,,0s.) from a PWA solution is depicted in Figure
3.0l

The analysing power for elastic neutron scattering from a quasi-free proton is
typically larger than for quasi-elastic charge exchange interactions. The analysing
power for the quasi-elastic case is approximately 70% of that for the elastic case
[36]. In this first analysis of C,s the elastic scattering values of A, have been
assumed. The difference between the quasi-elastic and elastic values will need to
be further assessed and accounted for a systematic error in the resulting values
of Cp. Agg is approximated from the distribution of A, by plotting fs. as a
function of E, for each angular and energy bin examined. The mean F, and

fs. point from each plot is determined and the value of A, from this point is
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taken by comparison with Figure [3.3] This value is used as the value of Agg to

subsequently calculate C.
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Chapter 4

Current Searches for Exotic QCD
States

Hadrons beyond the well known meson (¢g) and baryon (gqq) states were proposed
by Gell-Mann [12] with the introduction of the quark model. A wide range of
other colour-neutral states formed of quarks and gluons have been predicted since
then. These include ¢qqq [37, B8], qqqqq |38, 39] and gqqqqq states [40H42]. Other
possibilities for new states include objects formed only of gluons, glueballs [43] [44],
as well as “hybrid” mesons [45], which contain one or more gluonic degrees of

freedom in addition to ¢g.

There is a long history of claimed observations for various exotic states, these
are states with quantum numbers combinations that would be forbidden with
a standard meson or baryon quark content. Following the prediction of the H-
dibaryon (a state with B# = 2 and S = -2) [41], there was a rush of experimental
claims of observations [46]. However, as discussed by Clement [46], none of these
observations stood up to further scrutiny. States of five quarks, referred to as
pentaquarks [47], have also been the subject of many historical experimental
searches and claims [48]. In particular the ©F state gathered a lot of attention
in the early 2000’s with numerous claims of an observation. Following initial
optimism, subsequent experiments failed to reproduce the early results, leading

to the conclusion that such a state had not been found [49).

More recently the field of exotic states has been reinvigorated by a string

of exciting new possibilities from high quality, high statistics observations of
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tetraquarks (¢gqq), pentaquarks (qqqqq) and hexaquarks (ggqqqq). In particular
claims of tetraquark and pentaquark states by the LHCb collaboration have
reignited the search for such exotic states with incredibly high statistical
significance on their observations. A dibaryon state, the d*(2380), has also been
observed by the WASA-at-COSY collaboration and studied in great detail in

various reaction channels [50], 51].

This chapter will briefly discuss the tetraquark and pentaquark states recently
observed by the LHCD collaboration. This is followed by a more in-depth review
of the observations of the d*(2380) state. Future experimental prospects for the
d*(2380) are discussed and the measurements presented in this thesis are put into

context.
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4.1 LHCb Tetraquark States

Measurements of B — K%’ decays at Belle observed a resonance-like structure
in the invariant-mass spectrum of the 7%¢’ component of the decay [52]. More
recent work by the LHCb collaboration also observed a structure in this decay
that was consistent with the results observed at Belle [53]. A clear bump at
~4500 MeV, that is inconsistent with background predictions, can be seen in the
7¥1)’ invariant mass spectrum from this decay (see Figure . Additionally, the
complex amplitudes of the resonance-fit exhibit clear resonance behaviour when
plotted on an argand diagram (see Figure . The spin parity of the observed
state was determined to be 1*. This determination led the authors to rule out
other possible interpretations of the state and conclude that the observed state

is a bound four quark state with quark content cédu [53].

More recently, further results have indicated the presence of an additional four
states that are potential tetraquark candidates. A narrow structure was observed
in the J/1¢ mass spectrum for BY — J/1¢K™ decays by the CDF collaboration
[54]. Further investigation of these decays by the LHCb collaboration [55], 50]
observed four structures in the decay of this state, the lightest of which had
a mass consistent with the results from the CDF collaboration, albeit with a
larger width. The four observed states can be seen in Figure 4.3l The four
observed states are referred to as X(4140), X(4274), X(4500) and X(4700). It is
particularly interesting that a tetraquark model [57] ,not only predicts the correct
JFC assignment of the observed X(4140), but also predicts a further state with
the same JP at a slightly higher mass in the region of the observed X(4274)

state.
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4.2 LCHb Pentaquark States

Recent measurements by the LHCb collaboration at CERN observed resonance-
like structures in the J/vp channel of A) — J/¢K p decays [58]. A clear
peak (see Figure [1.4] panel (b)) in the invariant-mass spectrum of the J/vp
combinations from this decay can be seen. The observed data cannot adequately
be described without the inclusion of two Breit-Wigner resonances in the
distribution. These resonances are attributed to two pentaquark states (of quark
content uudcc), P.(4380)* and P.(4450)". The resonance behaviour of the
P.(4450)" state is particularly clear in the argand diagram (see Figure , panel
(a)) of the complex amplitudes of the resonance fits. Further analysis of these
observations also reached the conclusion that the data was consistent with the

resonances proposed [59] 60].

Following the announcement of the observed P.(4380)" and P.(4450)" states,
there were a wide range of theoretical interpretations of the results. Some of
these interpretations attributed the states to anti-charmed meson-hyperon (D
or D" with ¥ or ¥*) molecular configurations [61, 62]. Other interpretations
using diquark models predict a compact five quark system [63] 64]. A definitive
theoretical description of the observations requires further study of the states
observed at LHCb in addition to other potential pentaquark states. One such
route for further study of the LHCb states would be to attempt to observe them
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in photoproduction reactions as discussed by Wang, Kubarovsky and Karliner

[65-67].
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4.3 d*(2380) Dibaryon State

In measurements of double-pionic fusion of p + d —3Herm in 1960 [68], an
unexpected enhancement in the invariant-mass spectrum was observed close to
the 7 production threshold. Subsequent measurements in 1961 [69] by the same
researchers implied that this enhancement was isoscalar (I, = 0) in nature. This
anomalous result was observed by other groups and evidence for the isoscalar
nature of the state mounted [70} [71]. This enhancement is often referred to as
the “ABC” effect after the authors of the initial research [68].

The impact of this effect is particularly pronounced at beam energies correspond-
ing to the excitation of two A particles in the nuclear system. This observation led
to the subsequent interpretation of the ABC effect as a t-channel AA excitation
[72,,[73] (see Appendix[B]for explanation of t-channel process). Further theoretical
studies discussed the potential of this excitation as a “dibaryon” resonance [74-
76]. Recently this resonance was the subject of a large body of work by the
WASA collaboration that carried out numerous measurements across different
reaction channels. The measured resonance would come to be known as the
d*(2380) dibaryon in reference to a state predicted from theoretical work [42), [77]
and to follow the convention of resonance states (N* denoting I = % resonances
for example). The measurements at WASA and the properties of the d*(2380)

inferred from them are discussed in the next subsection.

4.3.1 WASA Collaboration Measurements

Early measurements [50] of the pd — 3Her ™7~ and pd — 3Her"7® reactions using
the WASA detector setup at the CELSIUS storage ring, once again observed
the expected enhancement of the ABC effect. It was noted that the effect
was particularly strong in the isoscalar 7°7° channel. These measurements
were followed up by further exclusive and kinematically complete measurements
of the double-pionic fusion reaction, pn — dn’z°, at CELSIUS [51]. These
measurements provided the first hints of a resonance-like structure as seen in
Figure [4.6} however, due to limited statistics no firm conclusions could be drawn
from these measurements. It was noted that the data is described very well by

an s-channel resonance with a mass of 2.36 GeV/c? and a width of 80 MeV.

Following an upgrade of the WASA detector setup, further measurements of the
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Figure 4.6 A plot of the energy dependence of the cross section for the reactions
pn — dotn™ and pn — dn%70 showing hints of an enhancement at

around \/s = 2.4 GeV [5]].
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pn — dr°7Y reaction were taken at COSY [78]. These new measurements were
again exclusive and kinematically complete but with far higher statistics than the
previous measurement. These measurements concluded that the observed results
(see Figure were consistent with an s-channel resonance with 7(J™) = 0(3")
(determined from angular distributions), m = 2.37 GeV and I' = 70 MeV. As
a caveat to this it was noted that for further confirmation elastic pn scattering
should be measured as the observed resonance should also be prominent in this

process; particularly in the 3Ds - 3G partial waves.

Further studies of double-pionic fusion processes were undertaken with the WASA
detector setup at COSY [79]. In addition to the isoscalar pn — dn%7° channel
these new studies also examined the isovector pp — dr™7° and isospin mixed (7
= 0 and 1) pn — drt7~ channels with high statistics. The isovector channel
(see Figure appears to only have a broad structure which can be accounted
for by a t-channel AA process. There is no evidence of a narrow resonance
structure at /s = 2.37 GeV in this channel. For the isospin mixed channel (see

Figure [4.9)) there is a clear narrow resonance structure present in addition to a
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at \/s = 2.37 GeV [T9].

broader structure. The narrow structure observed in this channel is consistent
with an s-channel resonance of m = 2.37 GeV and I' = 70 MeV. This same
structure is again observed in the isoscalar channel and is consistent with the
previous measurements [78]. This work confirmed the purely isoscalar nature of
the resonance. The need for further measurements, particularly on np scattering
and non-fusion two pion production reactions (such as np — nprm and np —

ppm¥7 ™), was also reiterated in this new work.

The pn — ppr’m— [RO], np — npr®7® [R1] and np — nprT7~ [82] channels
were subsequently measured, again evidence of the contribution of the s-channel
d* resonance was observed. More crucially measurements were also taken of
polarised np scattering [83, [84]. To prove that the observed structure is indeed a

true resonance it must be seen in this channel.

Exclusive and kinematically complete measurements of 7ip scattering were carried
out using the WASA detector setup at COSY [84]. These measurements were

carried out by utilising a polarised deuteron beam impinging upon a hydrogen
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Figure 4.10 The np analysing power, Ay, as a function of \/s [84)]. The solid
line is the unmodified SAID SP07 PWA solution [85], the dashed
(dotted) lines show the modified weighted (unweighted) solution.

target. This allows for the process Jp — NP+ Pspectator 10 be treated as a quasi free
process so that np scattering can be studied. The analysing power, Ay, for this
reaction was measured over a broad angular range. When these measurements
were compared to the existing SAID SPO07 [85] partial wave analysis (PWA)
solution significant deviations were observed. However, when this PWA solution
was revised by incorporating this new data set (now referred to as the AD14
fit [86]) clear poles were produced in the 3Dj - 3G3 partial waves. This revised
solution is also a very good fit to the data as seen in Figures and [4.11] As
mentioned in [84] due to the proportionality of A, to the P; Legendre polynomial
the resonance behaviour is strongest at 8™ = 90°, hence the clear effect observed
at 83° seen in Figure [£.10] Additionally pronounced looping behaviour can be

seen in Figure [4.11} such behaviour is strongly indicative of a resonance.

Further evidence has been observed in other hadron production channels, such
as the double-pionic fusion to *He and the double-pionic fusion to *He channels
[87, 88]. The measurements detailed in this subsection support the existence of
a narrow s-channel resonance of mass m = 2.37 GeV, I' = 70 MeV and I(J7) =

0(3%). Tt is particularly striking that these measurements agree very well with
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early theoretical predictions [40} [42] of such a state as discussed below.

Modern chiral quark model theory predictions ([89] and references therein)
reproduce this state with roughly the correct mass and width. These model
predictions are also able to predict the size of the state. Hadron production
measurements such as those detailed in this subsection do not provide information
on the size or the structure of the d*(2380). Measurements of the d*(2380)
using electromagnetic probes will provide access to such properties however.
By examining EM induced reactions the transition and electromagnetic form
factors can be determined. The transition form factors give access to the size
and structure of the state |46, [90]. Examination of the electric quadrupole and
magnetic dipole (and other multipolarity) moments can also provide information
about the structure of the resonance [91]. Previous relevant experiments using

EM probes are discussed in the next subsection.
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Figure 4.12 The proton polarisation at 90° in the centre of mass system as a
function of the photon energy [92]. Data points from other sources
are shown as open circles [93] and triangles [9]). The lines show
basic theoretical predictions.

4.3.2 Photoproduction - Previous Hints

The interpretation by Kamae and Fujita [76] of the structure seen at /s =
2380 MeV as being a potential dibaryon resonance was based upon work on
deuteron photodisintegration [92]. In these measurements the final state proton
polarisation from deuteron photodisintegration (yd — pn) was determined and
an anomalous peaking in the polarisation was observed at photon energies (£, ) of
~ 550 MeV (Figure . Note that in terms of /s, a photon energy of 550 MeV
is roughly 2362 MeV in the vd system. This strange behaviour had been hinted
at by previous measurements [93], 04], however, these earlier measurements were
at lower energies and over a relatively limited range of energies. Nevertheless,
these measurements disagreed with theoretical models available at the time [95]
as can be seen in Figure [4.13]

A range of subsequent measurements [96-H101] of the proton polarisation from
this reaction were carried out. A review article on the subject [3] compiled the

range of measurements as can be seen in Figure [4.14] Despite some disagreement
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Figure 4.13 The proton polarisation at 90° in the centre of mass system as a
function of the photon energy [93]. An increase that is inconsistent
with a theory prediction (Solid line, based on [95]) is seen as the
photon energy increases.

at energies above ~ 600 MeV (reasons for this and for why the Kharkov
measurements [98-100] are not generally particularly reliable, are discussed briefly
in [3, 10T]) the sharp increase in the proton polarisation at energies between 500
and 600 MeV is again observed. Note that the measurements of p, are focused
at 90°. As with A, in np scattering, the polarisation of the outgoing nucleons
from this reaction should be proportional to the Pj Legendre polynomial [46], so

should again have the largest effect at 90°.

Kamae [760] proposed a deeply bound A — A system as an explanation for the
observed behaviour and made tentative links to the ABC effect. They conclude
that the anomaly observed is due to an I(J™) = 0(3") dibaryon resonance. Similar
conclusions are also drawn by Tkeda [96], although this work also proposes an
additional dibaryon resonance in the region. Further work by Ganenko [100] also
attributes this behaviour to a dibaryon resonance. Whilst it is exciting to note
that the observed behaviour coincides with the mass of the d*(2380) and that
the proposed I(J™) values for the resonance match those observed in the WASA

measurement it should be noted that there are some issues.

All conclusions drawn estimate a width for the state that is far broader than
that observed for the d*(2380); this is likely due to the relatively limited number

of data points (and statistics) available for the measurements across the crucial
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Figure 4.15 MAID model predictions for p, for yN — 7ON with photon
polarisation = 1 and E, = 570 MeV (W = /s = 1396 MeV for
vN) [10Z].

energy range of 400-600 MeV. It is also particularly problematic that all of the
measurements carried out so far only the proton final state polarisation has
been determined. If a similar enhancement of the polarisation of the final state
neutron was also measured with the same characteristics this would be a strong
indication of the formation of a high-spin resonance state from this reaction.
Similarly to the pn scattering measurements [84] the strength and direction of
the polarisation should be identical for the proton and the neutron for the 3Ds -
3G partial waves. This is unlike in meson production reactions on the nucleon
where model predictions (MAID [102]) indicate that p,, will differ for the proton
and neutron as seen in Figure [£.15] As such there is a clear need for further
tests of nucleon polarisation from deuteron photodisintegration as a test of the
d*(2380) hypothesis and as a potential key to unlocking further information about
the size and structure of this state [46, 90]. This is the motivation behind the

experimental work detailed in this thesis.

4.3.3 Structure of the d*(2380)

The size and structure of exotic hadrons is a subject of theoretical and

experimental interest. Whether these objects are truly compact systems of six
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(or four/five) quarks or more like “molecular” systems of baryons and mesons is
so far an unanswered question. As discussed for the LHCb pentaquark results,

there are many theoretical models proposed to explain the results [61H64].

One property that is sensitive to the structure of the state is its size. An estimate
for the radius of a system of two quark clusters can be estimated from the binding

energy, €, of the state via [46, 103].

(4.1)

The states observed at LHCb are generally loosely bound near threshold states
and as such the above relation predicts radii on the order of 10’s of fm. This
implies that they are extended molecular states. In contrast this relation predicts

a radius of ~0.5 fm for the d*(2380) implying a compact hexaquark system.

Although a rough estimate, this conclusion is also implied by theoretical
calculations which predict that the observed d*(2380) is a hexaquark-dominated
state [89], being roughly 66% hexaquark and 33% molecular. These calculations
also predict a very small, compact state (see Figure of roughly 0.8 fm.
To examine the size of states such as this, the form factor of the state should be
determined. The inverse Fourier transform of the form factor provides information
on the radial charge distribution of the state. The d*(2380) is unique amongst the
exotic states observed so far, in that testing these predictions via measurements
of form factors from photoproduction reactions is currently achievable. For the
tetraquark and pentaquark states currently observed it is unlikely that such
measurements will be achievable in the near future with the possible exception
of the P.(4450)" state.

4.3.4 Photoproduction - Future Prospects

New measurements of yd — pn would need to cover the appropriate photon
energy range and be able to measure the final state polarisation of both the
proton and neutron with good statistics. As discussed by Bashkanov [90]
such measurements should also utilise polarisation measurements to filter out

resonance contributions from background. Such experimental conditions can be
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Figure 4.16 Relative wave functions for the deuteron (left) and d* (right) [89].

realised at the Mainzer Microtron (MAMI) [4] facility.

MAMI is capable of producing a high intensity (on the order of 10’s of pA)
polarised electron beam of up to 1.557 GeV in energy. In the A2 experimental hall
at MAMI this electron beam is used to produce real photons via bremsstrahlung.
Depending upon the choice of bremsstrahlung radiator used, the produced
photons can be linearly or circularly polarised. By using a polarimeter setup, such
a photon beam can be utilised to carry out recoil polarimetry measurements. A
recoil polarimetry measurement of this type has already been successfully carried
out by the A2 collaboration on the 'H(7, pr°) reaction [26]. As such the A2 hall
at MAMI is the ideal place to undertake further study of the vd — pn reaction by
utilising a new polarimeter setup capable of simultaneously measuring the proton
and neutron polarisation. The experimental setup in the A2 hall and the new
polarimeter setup are discussed in Chapters [5] and [0] respectively; a summary of
previous recoil polarimetry work at MAMI and elsewhere is discussed in the next

section.

4.4 Previous Recoil Polarimetry Measurements

Previous experimental work at MAMI successfully extracted recoil polarisation
observables for the reaction 'H(¥, pr°) [26]. In this experiment the degree of
polarisation transfer from the incident photon beam to the proton target was

determined. This observable is referred to as C, (see Appendix |C|for description
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of polarisation observables in photon-nucleon interactions). C,s is measured by
fitting the angular distributions of the protons after they undergo a nuclear
scattering interaction with some analysing material. In the case of the experiment
at MAMI a graphite analyser was used as a polarimeter, the graphite was placed
around the target. The setup used at MAMI for this experiment was not capable

of measuring the recoil polarisation of neutrons.

There is a limited range of other recoil polarimetry measurements carried out at
JLab [31], T01] and by the GEpIII and GEp2~y collaborations [104]. Of particular
interest are the JLab measurements that examined the recoil observables C,
and C, in deuteron photodisintegration [I0I]. As seen in Figure these
measurements cover a very limited energy range in the region relevant to the
d*(2380) dibaryon. These observables were also only measured for the produced

protons from the ~vd — pn reaction.

4.5 Summary

There has been renewed interest in the field of exotic states in QCD in
recent years. Particularly interesting is the d*(2380) dibaryon state. As
discussed, this state has been observed across a wide range of hadron-production
channels. However, as yet there has been no dedicated search for this state with
electromagnetic probes. The motivation for a new, high-statistics measurement
of deuteron photodisintegration utilising polarisation observables over the energy
range relevant to the d*(2380) is therefore clear. Such a measurement would not
only provide further evidence for the conclusions drawn about this state but could
also be the key to unlocking some of the unknown properties of the state, such

as its size and structure.
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Chapter 5

Experimental Apparatus

The experimental work outlined in this thesis was carried out in the A2 hall at the
Mainz Microtron (MAMI) facility located in the Johannes Gutenberg Universitét
in Mainz, Germany (see Figure [5.1)). This work was carried out in August 2016.
MAMI is an electron beam facility capable of producing polarised electron beams
with energies up to 1.557 GeV [4]. This electron beam is used to produce a
real photon beam in the A2 hall. The polarised electron beam is impinged upon
a radiator to produce a beam of bremsstrahlung photons. The energy of these
photons is deduced via momentum analysis of the recoil electrons in the Glasgow
Photon Tagger [105, [106]. The photon beam is incident upon a liquid deuterium
target yielding various photoproduction reactions. The target is surrounded
by the Particle Identification Detector (PID) which provides a AFE signal for
charged particles. This allows for the identification of protons, distinguishing
them from any other particles (charged or neutral). Surrounding the PID, is
the Edinburgh Phase-II Recoil polarimeter. Critical information on nucleon
spin orientation can be extracted from the experimental data by measuring re-
scattering processes in the polarimeter. Encircling the polarimeter are two Multi
Wire Proportional Chambers (MWPCs) that provide charged particle tracking
information. The target, PID, polarimeter and MWPCs are all contained within
the Crystal Ball calorimeter [5]. A further calorimetry array, the Two Arm
Proton Spectrometer (TAPS), is situated upstream of the Crystal Ball to provide
calorimetry information for forward polar angles [0, [7]. This chapter outlines the
technical parameters of the various detector systems in use at MAMI; the data

acquisition systems and the MAMI accelerator.
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5.1 Particle Interactions in the Detector Systems

There are various particle detectors in use in the A2 hall. The purposes of
these detector systems and the interactions particles have with these systems

are outlined briefly in this section.

5.1.1 Calorimetry Detectors

Calorimetry detectors measure the energy of incident particles. Particles
incident on calorimetry detectors will induce electromagnetic or hadronic showers
(depending on the type of particle) in the detector volume. Calorimetry detectors
convert the energy of these showers into a measurable quantity that can be used
to infer the energy of the incident particle. The Crystal Ball (CB) and Two Arm
Proton Spectrometer (TAPS) detector systems provide calorimetry information
for charged and neutral particles in the A2 hall. Both detector systems utilise
inorganic crystal scintillators to detect incident particles. Although the two
detector systems use crystals of different materials (see Section , the basic
principle of particle detection is the same for each. Incident particles produce
scintillation light which is proportional to the initial energy of the incident
particle. This light is collected by a photomultiplier tube to produce an electrical
signal. The processes by which charged and neutral particles produce scintillation

light differ slightly however, these processes are described briefly below.

Charged Particles

Charged particles (e~, protons, charged pions) incident upon inorganic scintillator
material will interact with nuclei in the crystal via coulomb interactions. These
interactions cause excitation or ionisation of the atoms in the crystal. Ions
produced from these events will in turn excite other atoms in the crystal. Excited

atoms will rapidly de-excite by emitting photons.

Neutral Particles

Photons incident upon inorganic scintillator material can interact via the

photoelectric effect, Compton scattering or by pair production. All of these
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interactions will result in the emission of a charged particle (or two in the case
of pair production). These produced charged particles will in turn lose energy
in the material as outlined above. Incident neutrons can interact in a variety of
ways. They may interact by quasi-elastically scattering from a proton bound in
a nucleus [I08]. The outgoing proton will in turn lose energy in the same way
as described above for charged particles. The efficiency of neutron detection in
the Crystal ball is strongly energy dependent, the detection efficiency peaks at
roughly 40% for neutrons of ~250 MeV [109)].

5.1.2 Tracking and Particle Identification Detectors

The Particle Identification Detector (PID) and Multi-Wire Proportional Cham-
bers (MWPCs) provide particle identification and tracking for charged particles
respectively. The PID is a segmented detector formed of thin strips of plastic
scintillator material. When charged particles are incident upon the detector they
will deposit a small fraction of their energy (AFE) in one of the PID elements.
The value of AE is dependent upon the velocity of the incident particle. For a
given momentum a charged pion or a proton will have different velocities. As
such they should produce a different AFE signal. This allows different charged
particles to be distinguished. This process is outlined further in Section [5.6.1]

The MWPCs operate slightly differently from the other detector systems in
use. The MWPCs are gas ionisation based detectors. Charged particles passing
through the chambers will ionise the gas inside. The negatively charged electrons
will move towards the nearest anode wire inside the chamber. Positively charged
ions will drift towards the cathode planes of the detector. As electrons approach
the anode wires they will accelerate rapidly producing an “avalanche”. This
avalanche induces a negative signal on the nearest anode wire and a positive
signal in adjacent wires. This behaviour can be utilised to determine where the
ionising event occurred. By utilising two wire chambers, two interaction points
can be determined and as such a particle track can be reconstructed. Information
from the wire chambers can also be utilised in conjunction with information from
other detectors such as the CB or PID to further refine this track.
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5.2 MAMI

5.2.1 Accelerators

The MAMI facility consists of a series of racetrack microtrons (RTMs) [110]
that have been expanded upon over time. A racetrack microtron consists of a
continuous wave linear accelerator (linac) situated between two large D-shaped
magnets (see Figure . An initial electron beam is accelerated through the
linac and is circulated back around into the linac via the two magnets. This
process is repeated many times. The electron beam gains energy and traverses a
larger path around the microtron on each pass around the device. This process
carries on until a maximum energy is reached for this particular RTM, at this
point the beam is ejected. MAMI was initially built with a single RTM and
further, larger RTMs were added over time to increase the energy range the e~

beam can cover.

The longitudinally polarised electron beam that is injected into the first stage
of the MAMI system is produced via photoemission from (III-V) semiconductors
[IT1]. Either strained GaAsP or InGaP photocathodes are used in conjunction
with a circularly polarised Ti:Sapphire laser beam. Following production, the
photoelectrons are accelerated to 3.5 MeV by a linac and injected into the first
RTM, RTM1. RTM1 accelerates the electrons up to 14 MeV before injecting
them into RTM2, here the electrons go through 51 turns; further increasing the
energy to 175 MeV. Once at 175 MeV the electron beam can be fed to RTM3
where it can be accelerated to 855 MeV.

In the mid 2000s an additional microtron was added to the MAMI facility to allow
for the production of electron beams with energies of up to 1.5-1.6 GeV [107, [112].
A further standard RTM was simply not feasible due to the excessively large size
of the magnets that would be needed to achieve such energies (~ 2200 tons of iron
per magnet). As such, a new double sided microtron design utilising two linacs
was used. With such a design four 90° magnets are used rather than two 180°
magnets. The overall weight of the magnets in such a situation is comparable
to that of the weight of those needed for RTM3. The two linacs used in the
design operate at different frequencies (one at 2.45 GHz the other at 4.9 GHz) to
reduce the degree of longitudinal defocusing caused by phase shifts in the linac

frequencies. A schematic of the microtron, dubbed a “Harmonic Double Sided
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dipole 4

Figure 5.3 Schematic of the MAMI-C harmonic double sided microtron, the
four 90° dipole magnets are shown in blue [107].

Microtron” (HDSM) and referred to as MAMI-C (see Figure [5.3).
three possible configurations of the four accelerators available at MAMI that are
summarised in Table Using the MAMI-C configuration the produced electron

beam can reach up to 1557 MeV in energy with a maxiumum beam current of

linear accelerator I (4.90 GHz)
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20 pA for a polarised electron beam (or up to 100 pA unpolarised).

Table 5.1 Summary table of different MAMI configurations

MAMI Max e~
Configuration Accelerators Used Energy/MeV
A RTM1, RTM2 175
B RTM1, RTM2, RTM3 855

C RTMI, RTM2, RTM3, HDSM 1557
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Table 5.2 Mott measurements taken over the August 2016 production run.
Errors on polarisation percentage are taken to be equivalent to
percentage error in asymmetry measurements.

Date p® With 2 plate/% p®. Without 3 plate/%
2/3/16 7477005 75.53+0.05
4/8/16 75.814+0.05 76.794+0.05
6/8/16 75.85+0.05 76.64+0.05
8/8/16 76.20+0.05 77.06+0.05
10/8/16 76.4940.05 77.30+0.05
12/8/16 77.012£0.06 77.7240.05
19/8/16 77.50£0.06 77.68£0.06
22/8/16 77.53+0.07 77.20+0.08

5.2.2 Real Photon Beam - The A2 Hall

The experimental work detailed in this thesis was carried out in the A2 hall
at MAMI. In the A2 hall the electron beam from MAMI is not used directly.
Instead the electron beam is used to produce a beam of bremsstrahlung photons
by impinging it upon a thin radiator. As the initial electron beam is polarised
the resulting bremsstrahlung photon beam can either be linearly or circularly
polarised depending upon the radiator that is used. If a radiator with an
amorphous structure, such as the 12 pm thick copper radiator, is used then
the resulting bremsstrahlung photons produced will be circularly polarised. The

degree of circular polarisation, p?, for a given photon is defined by [113]

Pff X E’Y X (Ee* + %(Ee* - Ew))

© _
E2 +(E. —E)?—2E, x(E. —E,)

Py

(5.1)

where F., is the energy of the produced photon, E.- is the energy of the MAMI
electron beam and pg, is the degree of circular polarisation of the MAMI electron
beam. This is typically ~75%. The degree of photon beam circular polarisation
is illustrated in Figure (for E.- = 1.557 GeV and p& = 76.6%). A Mott
polarimeter is utilised to measure p® [I14]. This polarimeter measures the
asymmetry of elastically scattered electrons either side of the scattering plane for
each helicity. From this asymmetry, pg_ can be determined. A Mott measurement
is typically performed every few days during production running, the measured
values during the August 2016 production run are tabulated in Table
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Figure 5.4 The circular polarisation of the bremsstrahlung photon beam as a
function of photon energy, the range relevant to the d*(2380)(400-
600 MeV) is illustrated.

The helicity of the produced electron beam is flipped with a frequency of 1 Hz
during production running. This helicity flipping is achieved by changing the
polarity of the voltage at the source of the polarised Ti:Sapphire laser beam
that is used to produce the initial electron beam. This results in the produced

bremsstrahlung photon beam also switching helicity with the same frequency.

To produce a linearly polarised photon beam a 30 pum thick diamond radiator
is used. High-energy electrons incident upon a crystalline radiator (such as
diamond) can produce linearly polarised photons via coherent bremsstrahlung.
The lattice vector of the radiator must be carefully aligned with the direction
of the electron beam to produce a high degree of linear polarisation. Alignment
of the crystal with the electron beam is achieved via a process known as the
Stonehenge technique [I15]. The degree of linear polarisation (see Figure[5.5)) due
to the crystaline radiator shows distinct drops in the polarisation (referred to as
a coherent edge). The peaks correspond to coherent bremsstrahlung production
from different crystal planes in the radiator. The position of the first coherent
edge was deliberately placed at 630 MeV to ensure a large degree of linear
polarisation in the 400-600 MeV region of interest. During the August 2016
production run both the copper and diamond radiators were used to gather data

with both linearly and circularly polarised photons.
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Figure 5.5 The linear polarisation of the bremsstrahlung photon beam as a
function of E., the first two coherent peaks can be clearly seen. The
two coherent edges mark the point where the second derivative of the
polarisation as a function of the energy changes in sign.

lin
y
ment” in the photon distribution due to the coherent bremsstrahlung. This

The degree of linear polarisation, p.", is determined by examining the “enhance-
enhancement is defined as being the ratio of the coherent and incoherent (amor-
phous) bremsstrahlung distributions. The degree of polarisation is determined
using the analytic bremsstrahlung calculation, which is a function fitted on the
enhancement distribution [27]. An example plot of how the enhancement and

polarisation compare can be seen in Figure [5.6|

Photons produced from coherent bremsstrahlung interactions are more forward
focused (i.e. are preferentially along the initial direction of the electron beam).

As such coherent bremsstrahlung photons are less effected by collimation than
lin
gl
collimator on the photon beam [I16]. It should be noted that the photon beam

incoherent bremsstrahlung photons. p2™ can be increased by utilising a narrow
needs to be collimated for other purposes. The beam is collimated to reduce
background induced by photons interacting directly with detector components
rather than the target. During the August 2016 experimental run a 3 mm

diameter collimator situated 2.5 m downstream of the radiator was used.
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Figure 5.6 The linear enhancement (top) and the resulting degree of linear
polarisation (bottom) [117]. Note that this figure is for comparison
only and is not from the August 2016 beamtime.
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5.3 Glasgow Photon Tagger

The Glasgow Photon Tagger [105, [106] is used to determine the energy of the
bremsstrahlung photon beam. This is achieved via a series of 353 EJ200 plastic
scintillator elements that form a focal plane detector (FPD) in combination with
a magnetic spectrometer (see Figure . The 80 mm long and 2 mm thick
scintillator elements vary in width from 9-32 mm. The widths of each element
decrease along the focal plane to keep the tagged energy range covered by each

element roughly constant.

An incoming electron of energy Fpge.n undergoes a bremsstrahlung interaction
with the radiator producing a photon of energy FE,. The bremsstrahlung
electron from this interaction is then momentum analysed by the 1.8 T magnetic
spectrometer and is detected in the FPD. The energy of the electron, E,, is
determined from the position of its hit along the focal plane. The energy of the

resulting photon is therefore given by

E, = Epeam — Epp. (5.2)

The scintillator strips in the FPD are individually wrapped in aluminised mylar
to reduce cross talk between elements and to light proof the elements. The
detector elements are read out by individual Hamamatsu R1635 photomultiplier
tubes. Each PMT has a thin (0.7 mm) steel plate either side of it to shield it
from magnetic fields. Each of the scintillator strips in the FPD overlaps with its
neighbours by slightly more than half their width. This is so that an electron
hit is defined by coincident signals in adjacent detector elements. This method
reduces the rate of random coincidences caused by multiple scattered electrons.
Overall the FPD array covers ~ 5-93 % of the initial electron beam energy with
a resolution of ~ 4 MeV when tagging a 1500 MeV electron beam. An individual
element can handle a maximum photon flux of roughly 10%ys~!. Due to the
roughly 1/E cross section for bremsstrahlung, it is effectively the highest energy
electron FPD elements (lowest E.) that set an upper limit on the overall electron

(and thus photon) beam intensity.
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Figure 5.7 The Glasgow Photon Tagger, trajectories of electrons with energies
expressed as a fraction of the initial beam energy are shown [106].
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5.4 Target

The target cell is a 10 cm long cylinder with a 3 cm diameter contained in a 125 pm
thick kapton housing at the centre of the Crystal Ball. Gaseous deuterium from
a storage tank is compressed and liquefied before being supplied to the target.
Hydrogen can also be supplied in this way if required. During the August 2016
experimental run the target was kept at a pressure of 1080 mBar and cooled to
21 K. In these conditions the liquid has a density of p ~ 0.07 gcm=3. During
operation these conditions are monitored and maintained by carefully heating

the target with two 4 W heaters or by supplying more liquid deuterium.

5.5 Calorimetry

Calorimetry information in the A2 hall is provided by two detector systems; the
Crystal Ball (CB) and the Two Arm Proton Spectrometer (TAPS). The Crystal
Ball is a spherical detector that covers a wide angular range (~ 21° — 159° in
polar angle, #, and almost the whole range in azimuthal angle, ¢) for charged
and neutral particles. TAPS provides calorimetry information for forward polar

angles between 6 ~ 2 — 20°.

5.5.1 The Crystal Ball

The Crystal Ball is a calorimeter that was constructed to study the J/¢ meson
at SLAC [118, 119] in the 1970s. After its use at SLAC, the Crystal Ball was
later used at other facilities around the world [120, 121]. The Crystal Ball was
moved to the A2 hall at MAMI in 2002.

The Crystal Ball is constructed from 672 Nal(Tl) scintillator crystals. These
crystals are arranged into a roughly spherical shape with two entry points on
opposite sides of the ball. Even with these two entry points the detector has an
angular coverage of ~ 93% of 47. The spherical shape is achieved by sub-dividing
the 20 triangular faces of an icosahedron (a regular 20 sided polygon, see Figure
5.8). Each face of the icosahedron forms a major triangle, each of these major
triangles is further divided into 4 minor triangles. Each minor triangle comprises 9

individual Nal(T1) crystals. Individual crystals are shaped as a truncated pyramid
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Figure 5.8 Illustration of the Crystal ball geometry showing the major and
minor triangles [118].

16" =16 x°

Figure 5.9 Illustration of an individual Nal(Tl) crystal used in the Crystal Ball
with dimensions in inches [J].
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(see Figure , with the “point” of the pyramid aimed toward the centre of the
ball. Each element is 40.6 cm long (corresponding to 15.7 radiation lengths for
photons). The base is an equilateral triangle with sides of length 5.1 cm whereas
the apex is an equilateral triangle with sides of length 12.7 cm. Each crystal is
wrapped in aluminised mylar to optically isolate it. Every crystal has its own
SRC L50B01-4 Photomultiplier tube to measure light output.

The array of 672 crystals is arranged into two hermetically sealed hemispheres
to protect the hygroscopic Nal(T1) crystals. The two hemispheres have an inner
radius of 25.3 cm and an outer radius of 66.0 cm; there is a small gap of 0.8 cm

between the two hemispheres.

fAE _ __0.02
E — E[GeV]0-36

in polar and azimuthal angles

The full detector array achieves an energy resolution o and an

g9
sin 0

angular resolution of oy = 2 - 3° and oy =
respectively [122]. These quoted resolutions are for electromagnetic showers.
Electromagnetic showers from events in the Crystal Ball will generally spread
over a group of crystals. When an event triggers a crystal a clustering algorithm
checks all adjacent crystals for an energy deposit. If any adjacent crystals have
an energy deposit above a user defined threshold (typically 2 MeV) then they are
included in the cluster. Any crystals adjacent to the included crystal are then
checked in the same way. This process carries on until no further crystals are
found to be above the threshold. The total measured energy for an event is the
sum of the energies from all the crystals included in the cluster. The overall hit
position, r, is determined by calculating the centre of mass for the individual
crystal energies via Equation . Proton and pion events generally hit fewer

crystals whereas electron and photon events produce broader showers.
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5.5.2 TAPS Forward Wall

The Two Arm Proton Spectrometer (TAPS)[6, [7] forward wall provides calorime-
try information for forward angles (§ = 2 — 20°) that are missed by the Crystal
Ball due to the downstream exit point. The TAPS forward wall (see Figure
consists of 366 hexagonally shaped BaF, crystals and 72 PbWQO, crystals. Each
BaF, crystal is 25 cm in length (12 radiation lengths) and 59 mm in diameter.
The PbWO, crystals are shaped such that four combine to form one BaF; crystal.
Each PbWOy, crystal is 20 cm (22 radiation lengths) long. The PbWO, crystals
replaced 18 BaF; crystals in the region closest to the beam line. The faster timing
of the PbWOQOy, crystals reduces pileup and allows for higher detection rates; the
larger number of crystals also helps to reduce the rate per crystal. Each crystal

is read by a Hamamatsu R2059-01 photomultiplier tube.

The BaF, crystals cover the angular range of 4-20° in #; the PbWQO, crystals
increase this angular range to ~ 2—20° in . The energy resolution for EM showers
in the BaFy TAPS crystals is 2% = 0.018 + % . The energy resolution of
the PbWOy crystals is comparable [123]. The angular resolution in @ is better
than 1° and in ¢ the resolution improves with increasing 6. Each crystal also has
a b mm layer of NE102A scintillator in front that is read out via two wavelength
shifting fibres. This scintillator can be used as a veto for charged particles by
using a AFE-FE method. This procedure is similar to that used for particles in the
Crystal Ball and is explained in Section [5.6.1] Particle identification in TAPS
can also be achieved by a Time of Flight (ToF) method. For the BaF, crystals

pulse shape analysis (PSA) can also be used.
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TAPS 2009: view from target

_09/TAPS/BaF2_PWO.dat

Figure 5.10 Schematic of the TAPS crystal arrangement at MAMI, the smaller
inner crystals are the PbWOy crystals [127).
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Figure 5.11 Diagram of individual TAPS BaFy crystal with VETO [7].
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5.6 Particle Tracking and ldentification

Charged particle tracking and identification in the Crystal Ball is achieved via the
combination of two detector systems, the Particle Identification Detector (PID)
and two Multi Wire Proportional Chambers (MWPCs). These two detector
systems surround the cryogenic target within the Crystal Ball. These two systems

are described in the following sections.

5.6.1 Particle ldentification Detector

There have been numerous iterations of the PID used at MAMI [125] 126]. The
current PID, PID-III, was specially designed and constructed for the August
2016 recoil polarimetry experimental run. PID-III is very similar in design to the

previous iterations but is far more compact.

PID-III consists of 24 individually wrapped EJ204 scintillator elements. FEach
element is 30 cm long and 4 mm thick, and has a 45° cut at one end. A small
piece of scintillator is attached beneath this to allow for detection of particles
down to ~ 7° in #. At the opposite end, each element is glued to a curved
perspex lightguide which is then optically connected to a Hamamatsu H3164-
10 PMT. On each element, one of the long edges has a side angled at 15° so
that all 24 elements can be arranged into a barrel shape (see Figure . The
barrel formed by the elements of PID-III has an inner radius of 3.3 cm and an

outer radius of 3.7 cm. Further details of the design and construction process for
PID-IIT are outlined in Chapter [6]

Charged particles that pass through the PID leave a small energy deposit, AE, in
the detector. Hits in the PID are correlated to hits in the Crystal Ball if they are
within a user defined angular range in ¢ (typically 15°). AFE from the PID can be
compared to the full energy deposition, F, in the Crystal Ball. When doing such
a comparison (see Figure protons and charged pions leave distinct bands in
the data.
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Figure 5.12 CAD drawing of a quarter of the PID-III array showing how six
elements fit together. The PMTs are displayed in red on the left,
the lightguides in magenta and the plastic scintillator elements in
lilac on the right.
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Figure 5.13 An ezample E—AEFE plot showing distinct proton (uppper band) and
pion (lower band) bands in the analysed data. The cut region used
to select out protons is shown in red (discussed further in Chapter

[5)-
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Figure 5.14 Diagram of the one of the MWPCs illustrating the orientation of
the strips and wires relative to each other [128].

5.6.2 Multi Wire Proportional Chambers

Surrounding the PID there are also two Multi Wire Proportional Chambers
(MWPCs), these are used to provide additional tracking and position information
for charged particles. These MWPCs are based on a design originally used for
the DAPHNE detector system [127]. The two coaxial MWPCs used surround
the target, PID and polarimeter inside the Crystal Ball. Each chamber consists
of three layers. The middle layer consists of wire running parallel to the beam
axis that acts as an anode. The inner and outer layers, that act as the cathode,
are strips wound at +45° with respect to the central layer (and therefore are at
90° to each other, see Figure . The wire chambers are filled with an ionising
gas mixture of argon, ethane, ethanol and freon in various quantities (ordered in
concentration from high to low). During operation in August 2016 a voltage of
2500 V was applied to the first chamber and 2550 V was applied to the second
chamber. The efficiency of the wire chambers is strongly dependent upon the
operating voltage. The MWPCs cover the full angular range in ¢ and 21° to 159°

in 6.
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Figure 5.15 An annotated CAD drawing of the experimental setup used in the
August 2016 production run.

5.7 Full Detector Array

The components of the detector setup contained within the Crystal Ball are
illustrated in Figures &|5.16l The target is enveloped by the PID, polarimeter
and MWPCs in turn. This arrangement allows for the easy distinction of Yd — nip
events (see Figure [5.17) where the neutron then undergoes a charge exchange
interaction in the polarimeter. Event selection details are outlined in Section
The inner detectors are then surrounded by the Crystal Ball. For forward
angles TAPS was present (not shown in figures) at 1.75 m downstream to provide
calorimetry for forward going particles. The polarimeter support cradle is fixed

(via three adjustable legs) to the CB tunnel region at the downstream end.
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Figure 5.16 Annotated Geant4 simulation of the

August 2016 experimental

setup showing the polarimeter support cradle.
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Figure 5.17 A cartoon showing a Yd — 1ip reaction where the neutron then
undergoes a charge exchange interaction in the polarimeter.
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5.8 DAQ System

Photomultiplier tubes (PMTs) are used to collect the scintillation light output
from many of the detector elements. A PMT produces an electrical signal with
an output proportional to the light incident upon it. The light input is in
turn proportional to the initial energy deposited in the detector element. The
electrical signal from the PMT is then digitised. Digitisation is done via an
Analogue to Digital Converter (ADC), a Charge to Digital Converter (QDC)
or a Time to Digital Converter (TDC) depending upon the particular detector
system. These digital signals are then read by the data acquisition system (DAQ).
The electrical signals produced by a detector must be converted into the desired
physical measurement from the detector (e.g. energy deposited in a CB element).
The conversion constants are determined through calibration procedures. These

procedures undertaken for the various detector systems are described in Chapter

[

5.8.1 Tagger

As discussed in Section [5.3] the energy measurement of bremsstrahlung electrons
incident upon the tagger is determined by the hit position on the focal plane
detector. The output from the individual tagger PMTs is amplified by a factor
of 10 and then passed to a constant fraction discriminator. If the pulse passes
the discriminator threshold it is read by a multi-hit CATCH TDC. The CATCH
TDC is based upon the design used for the COMPASS experiment [129]. The
logic pulse from the discriminator is also fed to a FASTBUS scaler unit. Scalers
are not gated by the trigger and can be used to obtain a measurement of the
electron event rate in the tagger. This event rate can be used to calculate the

overall photon flux.

5.8.2 Crystal Ball

The output signal from each CB PMT is fed into an active splitter, this splitter
accepts inputs from groupings of 16 crystals. The active splitter produces three
matched outputs for every input signal (see Figure . The three signals are
sent to a Flash ADC, a CATCH TDC and the other is used as an analogue signal
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Figure 5.18 Schematic diagram of the CB electronics system [125].

for triggering. The signal sent to the CATCH TDC is first passed through a
discriminator. The CATCH TDCs give a timing signal that is based upon the
timing of the pulse. The signal sent to the Flash ADC is sent via a delay, the
ADC samples the signal with a frequency of 40 MHz and calculates three integral
values. These values are the integral over 1 us (signal), over 100 ns before the

main pulse (pedestal) and the integral over the first 300 ns (tail) of the pulse.

5.8.3 TAPS

The signals from the TAPS BaFy elements are analysed in such a way that the
fast and slow timing scintillation components of the crystal can be used for pulse
shape analysis [I30]. The signals from these elements are passed through a splitter
that produces three outputs (see Figure . The first of these outputs is sent to
a leading edge discriminator (LED), this signal is used for triggering. The second
output is sent with a delay to two QDCs. The QDCs have different integration
times (200 ps and 40 ps) to allow for pulse shape analysis. The third output is
processed with a constant fraction discriminator (CFD) and TDC, this output

gives timing information for the pulse.
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5.8.4 Trigger

During the August 2016 experimental run the trigger was set to save an event
from the DAQ only if the total energy sum in the CB of over 100 MeV and the
event multiplicity was 24. The energy sum amount is based upon the analogue

sum of all output signals from the Crystal Ball.

5.9 Geant4 Simulation

The energy of particles detected in the Crystal Ball (CB) must be corrected for
energy losses. This energy loss correction is a function of the path length through
the detector array and the energy of the particle, E. The path length is a function
of sin(#). The energy loss correction function is therefore a function of F and
0. To parametrise this function a simulation of the detector system was used.
This simulation is also used in the calibration of the PID. An accurate knowledge
of the energy of the particle is crucial for determining scattering angles and for

estimating the effective analysing power.

A Geant4 simulation of the detector geometry in the A2 hall [131] was used during
various stages of the work on this project. The existing simulation was updated
to include the new PID, polarimeter and supporting structures [132]. Geant4 is
a simulation toolkit [I33] based upon a collection of C++ classes that model the
passage of particles through materials. As particles traverse designated detector
regions in the simulation the energy deposited is calculated in a series of steps
(the step interval can be adjusted) according to the cross-sections of physical
processes that are databased. The input to the simulation is a phase space event
file which contains the 4-vectors of the photon beam and the desired reaction
products as well as the vertex of the interaction in the target. The phase space

events are generated using the EdGen [134] event generator.

73



Chapter 6

Updated Detector Equipment for

Polarimeter Measurements

This chapter outlines the design and construction of the phase-II nucleon
polarimeter setup at the University of Edinburgh. This design and construction
work was carried out by myself with the assistance of colleagues and technical
staff. The design considerations of the polarimeter required a subsequent redesign
and reconstruction of the Particle Identification Detector (PID, this variant being
PID-IIT) as well as a new target cover. The design considerations of these three
components and their construction is described in subsequent sections. Testing,

carried out during construction for PID-III, is also discussed.

6.1 Design

The basic design for the phase-II polarimeter was outlined in the proposal for
the experiment [I35]. The design built upon the previous phase-I polarimeter
that was used in an earlier experiment [26]. A Geant4 simulation of the phase-I
polarimeter setup can be seen in Figure [6.1} This setup was designed to measure
polarisation for protons but not neutrons. Tracking information for events in this
setup was more limited due to the lack of the MWPCs. The MWPCs were not
in place as the space they are usually positioned in was taken up by the graphite

polarimeter.

The proposed phase-II polarimeter was designed to measure polarimetry infor-
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Figure 6.1 A Geant4 simulation of the phase-1 polarimeter. The PID is shown
in blue, the graphite polarimeter in pink and the target in yellow
[135]. Note the lack of the MWPCs. The photon beam enters from
the left of this image.
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Figure 6.2 A Geantj simulation of the phase-II polarimeter [135]. The target is
shown in red, the PID in blue and the MWPCs in red/bright green.
In this design it was envisaged that there would be a 1.5 cm graphite
cylinder, this is shown in grey between the PID and MWPCs. A
new forward plug detector is depicted in dark green.

mation for both protons and neutrons. The design envisaged that the phase-II
would utilise both the PID and MWPCs. The design in the proposal featured a
1.5 cm thick layer of graphite between the PID and MWPCs. This design also
included a new “forward plug” detector in the setup. A preliminary version of

the design can be seen in Figure [6.2]

The 1.5 cm thickness of graphite in this design is less than the 2.25 ¢cm of graphite
used in the phase-I polarimeter. In the final design it was decided that the
thickness of the graphite should be increased as much as possible to maximise
the probability of a scattering event to occur. However, this component must sit
between the PID and the MWPCs. Fitting more than 1.5 cm of material in this
space was not possible without redesigning and rebuilding the PID (or MWPCs).
Due to this limitation it was decided that a new smaller version of the PID would
be built. Reducing the size of the PID also requires that the target cover would

need to be reduced in size.
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6.1.1 Polarimeter Design

Redesigning the PID and target cover allowed the polarimeter to be over 1 cm
thicker than the preliminary design in the experimental proposal. The main piece
of the polarimeter is a 30 cm long graphite cylinder of inner radius of 3.9 cm and
an outer radius of 6.5 cm. The polarimeter also consists of a graphite end cap
(situated downstream) at the end of this cylinder. This end cap is 2.6 cm thick
and has a hole of 2.4 cm in radius removed from the centre to allow the beam
to pass through. To allow the polarimeter to be fixed into a support structure,
three shallow channels were drilled into the edge of the barrel and three holes of
radius 0.33 cm were drilled into the end cap. These channels were spaced 120°
apart from each other around the edge of the barrel. The holes in the cap were

centred at a radius of 5.6 cm and again were spaced 120° apart from each other.

6.1.2 PID-IIl Design

The new PID-III was designed to have comparable performance to the existing
PID-II. To achieve this, the segmentation of PID-III was kept the same as the
previous iteration (24 elements). Each element would also be constructed from
the same EJ204 plastic scintillator and the thickness of each element was kept at
4 mm [I36]. The readout for the PID is also via the same type of photomultiplier
tubes (Hamamatsu H3164-10) as used in PID-II. To reduce the PID in size the
inner radius of the barrel formed by the elements was reduced to 3.3 cm. Due to
this reduction in radius, the length of each PID element could be reduced from
50 cm to 30 cm whilst retaining the same angular coverage (in ). As in the
previous iteration, one long edge of each element has a side angled at 15° so that

the elements can be arranged into a barrel shape.

To enable PID utilisation for events with particles going into the end cap,
additional end pieces were added to one end of each PID element. These elements
are again 4 mm thick pieces of EJ204. To improve light transfer from these end
pieces along the length of the rest of the element, a 45° angled cut was taken from
the end of each long PID element piece. The exact dimensions of these pieces

and of the main part of the PID elements can be seen in Appendix [A]

Scintillation light from the PID elements is channelled via lightguides to PMTs

for readout. Due to the reduction in size of the PID, it would not be possible to
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Figure 6.3 CAD image of the PID support crown. There are 24 channels for
the PMTs and a slot at one end, the light guides are inserted into
this slot to couple to a PMT.

have the PMTs at the same radius as the PID without moving the PID further
forward. This is due to the way in which the target cover increases in size beyond
the immediate target cell region. To keep the PID in the same position, curved
perspex lightguides are used to channel the scintillator light out a further 2.2 cm
in radius from the PID elements. At this point they are optically coupled to the
PMTs for readout. The PID elements and PMTs require a supporting structure to
keep them fixed in place. A new 3D printed “crown” was designed to support both
the PID elements and PMT's simultaneously. The support crown is a cylinder with
24 channels to insert PMTs into, a CAD drawing of the crown can be seen in

Figure [6.3} a full schematic diagram is available in Appendix [A]

6.1.3 Target Cover Design

The hydrogen target cover also needed to be reduced in size in order to incorporate
the new smaller PID and graphite polarimeter. The cover for the target was

redesigned and built at the University of Edinburgh. The cover is a series of
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three pipes of gradually increasing diameter, the narrowest part that covers the
liquid hydrogen target was the key piece to reduce in size. A new 1.5 mm thick
carbon fibre tube of inner diameter 57 mm was used for this piece of the cover.
New cover and window flanges; as well as two sections of aluminium pipe were

also procured. Schematic diagrams are included in Appendix [A]

6.2 Construction

6.2.1 Polarimeter Construction

The polarimeter barrel and end cap were machined from a graphite block by
Olmec Advanced Materials [I37]. The graphite was subsequently painted to
reduce the spread of graphite dust. Threaded steel rods were inserted through
holes in the end cap and along the channels in the graphite barrel. These were
fixed in place at one end by screwing them onto a 1 ¢m thick aluminium ring. The
rods were then fixed in place at the opposite end by an aluminium plate (again
1 cm thick) placed after the end cap. This plate is attached to an aluminium pipe
that is used to position the polarimeter into the supporting “cradle” structure.
An image of the polarimeter after painting and being fixed into its supports can

be seen in Figure [6.4} schematic diagrams of the cradle structure can be seen in
Appendix [A]

The cradle is the same length as the polarimeter such that the entire graphite
block can rest in the cradle before insertion. The support tube rests on two points
on the cradle that can then be clamped down individually. The supporting tube
was deliberately designed to be as long to be able to introduce the polarimeter
into the rest of the detector setup very gradually. This is crucial due to the
fragility of the MWPC and the small clearance between the components in the
detector setup. The cradle is supported by two adjustable legs that are clamped
to the edges of the existing Crystal Ball support structure and a third central
leg that rests in place on this support structure as seen in Figure The two
legs that are clamped to the structure are individually adjustable in such a way
that the cradle can be levelled to ensure that the polarimeter is inserted into the

detector setup on a flat level and not at an angle.
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Figure 6.4 The painted polarimeter fixed into the support structure. The
polarimeter end cap can be seen at the top right end of the support
thread channel.

Figure 6.5 The assembled polarimeter support cradle fixed in position on the
Crystal Ball frame. The positioning of the three legs can be seen as
well as the adjustable clamps to alter the level of the cradle.
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Figure 6.6 Image showing the cut surfaces of a PID element before and after
polishing compared to the cast surface.

6.2.2 PID-Ill Construction

The PID elements and end pieces were cut from a cast sheet of EJ-204 by the
mechanical workshop at the University of Edinburgh. Any edge that was cut in
this way had a very rough surface, this is far from optimal for light transfer. The
cut surfaces of the scintillator were polished. The polishing procedure involved
gently sanding each edge with five successive grades (ISO grit ratings of P220,
P600, P1000, P2000 and P3000 in order of coarsest to smoothest) of sand paper
before applying a final polishing solution. The 321 polishing solution by Novus
was used for this purpose [I38]. The difference in optical quality of the surface
before and after polishing can clearly be seen in Figure [6.6] After polishing the

elements were thoroughly cleaned with isopropyl alcohol.

After cleaning, the end pieces were glued in place using EPO-TEK 301-2 epoxy
glue [139]. After this glue cured, the elements were wrapped in 1 mil (25.4 pm)
thick aluminised mylar along their length. The end pieces were painted with
BC-620 reflective paint [140]. This paint was not suitable for the long, thin,
nature of the main length of the scintillator elements. However, wrapping of the
end pieces in mylar was deemed unsuitable due the fragility of the pieces once
glued in place. The lightguides for the PID were also made by the mechanical
workshop. A quick qualitative test of light transmission through the lightguides
was carried out with a laser to ensure that light transmission was sufficient. As
seen in Figure the light transmission was very satisfactory. As with the PID

elements, the lightguides also needed polishing, cleaning and wrapping. This was

81



Figure 6.7 Qualitative test of light transmission through a curved lightguide
using a laser.

achieved using the exact same method as for the PID elements. Once wrapped,
the lightguides were glued onto the PID elements using the same EPO-TEK 301-2

glue as used for the end pieces.

After the lightguides were fixed in place, the PID was arranged in two halves,
as shown in Figure [6.8] Each half was wrapped in an additional layer of 1 mil
aluminised mylar. Following this, the lightguides from each half were slotted
into position in the support crown. Once all 24 lightguides were in place, they
were fixed into the support crown with silicone putty as shown in Figure 6.9
Once fixed in place, the PMT channels in the support crown were checked with
an endoscope camera (see Figure . Any material blocking the lightguide
surface (such as mylar foil or putty) was removed. After this all of the PID
elements were wrapped in black tedlar for lightproofing. Silicone grease was
applied to the PMT surface where it would interface with the lightguides and the
PMTs were inserted into their channels. The support crown was subsequently
wrapped in black tedlar. Black putty was inserted behind the PMTs in their
channels for further lightproofing. The finished PID can be seen in Figure [6.11]
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Figure 6.8 Preliminary arrangement of half of the PID elements.

Figure 6.9 Lightguides being fized into place in the support crown during
construction.
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Figure 6.10 An image from the endoscope camera wused to confirm the
lightguides were well situated in the support crown channels and
not obscured by silicone sealant or mylar wrapping.

Figure 6.11 PID-III shortly after final wrapping and construction.

84



Figure 6.12 The new target cover fully assembled prior to shipping.

6.2.3 Target Cover Construction

The metal sections of the target cover were welded together by the mechanical
workshop at the University of Edinburgh. The kapton window at the end of the
cover was glued onto the flange with Torr Seal glue [141]. This flange was then
glue onto the carbon fibre tube, which was in turn glued in place (again using
Torr Seal) on the aluminium section. The cover was leak tested and no issues
were found. The completed cover, seen in Figure 6.12] was then shipped to Mainz

for installation.

6.3 Preliminary Testing on PID-III

Prior to their insertion into the crown, all of the PMTs were electronically tested.
A selection of PID elements were also tested before they were fixed into the
support crown. This testing examined the signal produced in a PID element
from a radioactive source. A 111 kBq (at time of commission, 1995) 2°"Bi was
used for testing purposes [142]. The source was placed at various points along the
PID element and the counts over 5 minutes were measured in order to examine
how the signal varied as a function of distance from the PMT. This test setup
can be seen in Figure |6.13] The variation in signal strength along the length
of the elements was compared to the behaviour of elements used in PID-II. As
can be seen in Figure[6.14] the tested PID-III elements compare favourably with
those used in PID-II. This variation in signal is due to light attenuation along
the length of the detector elements. This is discussed further in Chapter [7}

Once PID-IIT was shipped to Mainz and installed, the voltages for the PID-III
PMTs were all readjusted in order to have similar signal output to the PID-II
PMTs. This was carried out prior to the beamtime by examining the interaction

of cosmic ray particles with the PID. The voltages used during the August 2016
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Figure 6.13

207 Bi source placed on top of a test PID element as part of droop
testing of the new elements.
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Plot of the signal strength as a function of distance from PMT.
The averaged performance of PID-II elements is illustrated in a
light blue (line extending to 50 cm) and a sample of various PID-
III elements are shown in various colours (lines ending at 30 cm).
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Table 6.1 Voltages for the PID-III PMTs after adjustment

PMT # Voltage/V PMT # Voltage/V
0 850 12 1200
1 850 13 950
2 880 14 1050
3 1050 15 920
4 1130 16 850
) 950 17 830
6 1000 18 900
7 950 19 1050
8 1150 20 1150
9 900 21 1300
10 900 22 900
11 950 23 1050

beamtime for the individual PMTs after adjustment are listed in Table [6.1]
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Chapter 7

Detector Calibrations

To convert the electrical signal outputs from the various detector systems into
useful physical quantities detector calibration constants need to be determined.
This chapter outlines the processes by which the detector systems used in the
A2 hall are calibrated. Much of the calibration work on the detectors is carried
out by colleagues within the A2 collaboration. Credit for each process will be

explicitly outlined.

7.1 Timing Calibrations

Accurate timing calibrations are vital for background subtraction procedures
(outlined in Section [8.1.1]). These calibrations are also important for carrying out
any analysis that looks at coincidence hits of detectors. The timing calibration
procedure is outlined here and specific or additional procedures for individual
detectors are described in their relevant subsections. The energy and timing
calibrations for the detectors were carried out by Chris Mullen and other A2

collaboration members at the University of Glasgow unless specified otherwise.

Time to Digital converters (TDCs) provide detector hit timings, with the TDC
providing a start and stop signal. The width of this signal is digitised to a discrete
channel value. For a given channel, ¢, the physical time, t, is a function of the

gain, g, and offset, 0. The physical time is calculated via the relation
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t=g(c—o). (7.1)

The goal of a timing calibration is to determine the correct values for the constant
and offset. The gain is a property that is intrinsic to the TDC and will not vary
on an element by element basis. The offset does need to be determined on an
element by element basis however. The offset can be adjusted and chosen in such

a way that coincidence peaks that are used for calibration are centred on 0.

TDCs for different detectors are stopped and started in a slightly different way.
The TDCs for the tagger, PID and CB are started by the trigger signal and
stopped by their own signal as shown in Equation (7.2). The TDCs for the
TAPS and Veto detectors are started by their own signal and stopped by the
trigger signal as shown in Equation . When looking at time differences
between detectors the trigger time should be made to cancel. The trigger time
is affected by jittering so removing it improves the timing resolution. As such,
time ‘differences’ are actually either a sum or a difference depending upon the

detector combination.

= ttrig — tdet (72)
U= tdet — ttrig (73)

To determine the timing offset for a detector element the timing spectrum of each
element is fitted with a Gaussian. The mean, pu, calculated from this fit is used
in conjunction with the conversion gain,g, and old offset value,o.q, in Equation
to determine a new value for the offset, opey.

i
Onew = Oold — 7.4
p (7.4)
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7.1.1 Crystal Ball

The conversion gain for all Crystal Ball elements is fixed at 0.117 ns/channel [143].
As such, only the timing offsets must be determined for each element. There are
three steps to this procedure. One of these steps, the time walk correction is
necessary due to the fact that the Nal(T1) crystals have a slow rise time of ~
250 ns [32]. This slow rise time means that the time at which the signal exceeds
the LED threshold is strongly dependent upon the amplitude of the signal - i.e.

there is an energy-dependent component to the time.

Time Prealignment

The first step to determining the correct offset is the time prealignment. The time
difference, At, for all cluster hits combinations is determined dependent upon the
central detector element hit in each case. Events examined are not dependent
upon a PID coincident hit and slow charged particles are neglected. As such, the
events examined are photon event clusters. The time difference distribution for
each element, ¢, is fitted with a Gaussian. The mean value of the Gaussian for
each element, (;, is used to determine a new offset value, o}, for each element.

This is calculated via

o) =0+ 1, (7.5)

i
where o; is the initial offset and g; is the conversion gain which is the same for
each element as outlined earlier. Offsets are calculated iteratively for all elements.

Once converged the mean values for all At distributions are centred at 0.

Time Walk Correction

The time-energy dependent component must be corrected to optimise the Crystal
Ball timing resolution. To do so plots of the time as a function of the energy

deposition, Egep, in each element are fitted with

b

t(Fgep) = a + ————,
(Baep) (Edep + 0
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Figure 7.1 Time in the Crystal Ball as a function of the energy deposit in the
Crystal Ball showing the time walk effect [1{)].

where a, b, ¢ and d are free parameters that are determined individually for each
detector element. Figures shows an example of this fitting procedure. The
result of applying the correction is clearly seen in Figure The parameter a is
the rise time parameter. For some elements, this may need to be adjusted further

0 events that have also

as discussed in the next section. This fit is applied on 7
had missing-mass and invariant-mass cuts applied in order to have a clean signal.
The relative timing of the tagger is used to calculate the time for all detector
elements for the selected events. The parameters determined in Equation (7.6])

are used to obtain a corrected detector time, t', via

b

' =t— (a4 ——
( (Baep + )

). (7.7)

Because the tagger-time difference is used to calculate the corrected parameters,

the distributions of ¢ is automatically centred at 0 with respect to the tagger.

Final Calibrations

The fits for the time-energy dependence carried out for the time-walk correction
are not particularly accurate for elements with low statistics (e.g. elements in the
backwards region). This inaccuracy causes a slight shift in the relative timing

between CB elements. This can be corrected by fitting the mean values of the
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Figure 7.2 Time in the Crystal Ball as a function of the energy deposit in the
Crystal Ball after the time walk correction has been applied [177)].

relative times again after the time walk correction. These fits can be centered at
0 by adjusting the rise-time parameter, a, from Equations ((7.6) and (7.7)).

7.1.2 TAPS

The TDCs used for TAPS have a fixed conversion gain of 0.05 ns/channel; as such,
to calibrate TAPS the TDC offsets must be optimised for each element. Unlike
the Crystal Ball, the detector elements used in TAPS have a short rise time so a
time-walk correction is not needed. The TDC offset values are calibrated using
the same procedure as for the Crystal Ball. Time-difference spectra are created
for the central element detector in each cluster for all neutral particles determined
in TAPS. Using Equation new values for the offset are calculated. Again
this is an iterative procedure; once completed, the peaks for all detector elements
should be aligned at 0. A good timing resolution for TAPS is essential as TAPS
is utilised in the timing calibration of the Tagger. TAPS can also be used for

time of flight measurements.
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Figure 7.3 Left : Timing spectra for all neutral particle hits in TAPS and hits
in tagger. Right : An example fit for one tagger element [144).

7.1.3 Tagger

As mentioned in the prior section, the timing calibration for the Tagger is
dependent upon TAPS; as such, the calibration for TAPS must be carried out
first. The gain of the Tagger TDCs is fixed at 0.117 ns/channel [I43]; as with
TAPS and the Crystal Ball, the TDC offsets must be calibrated. For the
Tagger, all combinations of neutral particles in TAPS and hits in the Tagger
are examined. The time difference between the TAPS elements and the tagger
(for every activated tagger element) is calculated and plotted as seen in Figure
E The coincidence peak is fitted with a Gaussian and Equation is utilised
once again to iteratively adjust the offset values until all timing spectra peak at
0.

7.1.4 PID

The TDCs for the PID have fixed gains of 0.117 ns/channel [143], so as with the
Tagger and TAPS, the TDC offsets must be adjusted for each element. Again,
this is done by fitting a Gaussian to time difference spectra and using Equation
to iteratively find new values for the offset until the peaks align at 0 in the
spectra for each element. For the PID, two different charged particle hits in the
PID are taken as a pair and the time difference between these is plotted as a

function of detector element hit.
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7.2 Energy Calibrations

Energy deposition in a scintillator is generally converted to an electrical signal
(typically via a PMT). This analog electrical signal is then usually converted
to a digital signal via a charge to digital converter (QDC). The digitised channel
number a signal is detected in, ¢, can be converted to a physical energy deposition,

Epep, via the relation

EDep = g(C - p)7 (78)

where ¢ is the conversion gain (Energy Unit/Channel) and p is the pedestal
position (channel) that represents the channel that corresponds to zero energy.
The purpose of carrying out the energy calibration is to find suitable values for g
and p. This conversion assumes the approximation that the produced electrical

signal is linearly proportional to the energy deposited.

7.2.1 Crystal Ball

The energy calibration of the Crystal Ball must be carried out in several steps.
An initial low-energy calibration is carried out that is important for the DAQ
system. A second energy calibration valid for higher energies is then carried
out. This is followed by a higher-order correction to counteract an overcorrection
from the second step. The second and third calibrations are important for offline

analysis of the data. These are described below.

Low-Energy Calibrations

The low-energy calibration for the Crystal Ball is carried out by colleagues at
the Institut fiir Kernphysik in Mainz. To carry out the calibration a 2! Am/Be
source is used. This source produces a 4.438 MeV monochromatic gamma ray

through a series of decays
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where 12C* subsequently decays to its groundstate via the emission of a 4.438 MeV
gamma ray. This is the gamma ray that is used in this calibration. The gain for
each detector element photomultiplier tube is adjusted so that the peak in the

ADC spectrum from these photons occurs in the same position in this spectrum.

High-Energy Calibrations

Most events of interest in the Crystal Ball have far higher energies than the
4.438 MeV photons used for the low-energy calibration. As such, for offline
analysis a higher-order energy calibration must be applied. To carry out this
energy calibration photons from the decay of the neutral 7° meson are used. The
peak of the 7° meson in the two-photon invariant mass spectrum is used as a
reference point for this calibration process. The invariant mass for all neutral
cluster pairs is filled in histograms depending upon the central detector element
of the clusters. This calibration process must be done iteratively as the gain
adjustment of a particular detector element is not independent of the gain applied
to other elements. After several iterations of gain correction the peak of the 7°
should be at the correct position for all detector elements. An example of this

can be seen in Figure 7.4}
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Quadratic Energy Calibrations

After carrying out the calibration described in the previous section, the two-
photon invariant-mass spectrum should have a peak at the position of the 7°.
However, in the same spectrum the peak for the 1 meson is not in the correct
position with respect to its real mass. This is due to an overcorrection by
the energy calibration for higher energies. This overcorrection is caused by the
photon energy being reduced due to detector thresholds and shower losses. The
relative weight of this energy loss is smaller for higher cluster energies, hence the

overcorrection for higher energies, such as photons from the 7.

To adjust for this, a quadratic function is applied to the energy deposition [145].

This function takes the form

E' =aFE + bE?, (7.9)

where E’ and E are the corrected and uncorrected energies respectively. The
constants a and b are determined such that the corrected energies result in the
correct invariant masses for both the 7 and 7 mesons. The two correction
parameters are determined for each detector element. Further details on the

high-energy calibration process can be found in Ref [146].

7.2.2 TAPS

The energy calibration for TAPS is performed in a similar manner to the Crystal
Ball calibration. There is a low-energy calibration stage that must be carried
out for data taking and a higher-energy calibration that is required for offline
analysis. The low-energy calibration stage for TAPS is carried out using cosmic

rays.

Low-Energy Calibrations - Cosmic Rays

Unlike in the CB, cosmic rays can be used to perform an energy calibration
in TAPS. Due to the fact that all of the elements in TAPS are orientated
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Figure 7.5 Left : Spectrum of the invariant mass for all TAPS elements. Right
o An example fit for one TAPS element [144).

horizontally the distribution of cosmic ray trajectories is equivalent for all
elements. A calibration using cosmic rays is generally carried out before and

after a measurement.

The spectra obtained from a TAPS cosmic ray measurement is fitted with a
Gaussian and an exponential background on an element by element basis. From
the Gaussian peak position, the mean energy deposited by cosmic rays can be
calculated. From this cosmic ray spectrum the pedestal position can be extracted;

thus using Equation ([7.8)), the conversion gain for each element can be determined.

High-Energy Calibration

The gains for the TAPS elements are calibrated using the same process as is used
for the CB. However, in the case of TAPS events where one photon is detected
in the CB and one is detected in TAPS are used to carry out the calibration.
This is due to the very limited statistics of 7° decays where both photons are
detected in TAPS. Figure shows how the invariant-mass spectrum of these
events appears for all elements once the process is complete. Because one of the
photons must be detected in the Crystal Ball, the calibration for the Crystal Ball
must be carried out before the high-energy calibration for TAPS.

Additional Calibrations

In addition to the calibrations detailed above there are also further TAPS

calibrations that are applied. These calibrations are carried out in order to use
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the BaF, detectors for pulse shape analysis. As TAPS is not used in the analysis
outlined in this thesis (beyond needing to calibrate for the tagger) this calibration
will not be detailed here. The procedure for these calibrations is outlined in [146].

7.2.3 PID

To select appropriate pedestal and gain values for the PID elements, events from
the reaction yn — pm~ are examined. The selection of these events must be done
without utilising the PID. In principle, any reaction that produces two particles
(with at least one charged) could be used. Only events in a narrow angular range
in 6 of 35-45° were selected. From Monte Carlo simulations of the same reaction,
the value Epip for a given value of Ecg can be determined. This relation is then
applied to determine the Epip values for the real data from their real Egg values.
These calculated Epip values are then plotted as a function of their ADC channel
number. This plot is then fitted with a function of the form given in Equation
to produce a straight line. The fit parameters directly give the gain and
pedestal values. An example fit of this type can been seen in Figure
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Figure 7.7 Epip for a given reference point as a function of element number
before (Left) and after (Right) iteratively calibrating the PID [147].

This procedure is done for all PID elements. Once completed, reference points
in Ecp on a plot of Epip as a function of Fcg (An E- AE plot) are taken for
each element. Reference points should be taken across the full range of energy
deposition values. FEpip at these reference points is then plotted as a function
of the PID element number. If the calibration is correct, these points should all
be aligned. If this is not the case the calibration procedure outlined above is
repeated until the points align. An example of how such a plot may look before

and after all elements are sufficiently aligned can be seen in Figure

The energy calibration for the PID was carried out by Mikhail Bashkanov at the
University of Edinburgh.

7.2.4 Tagger

The relation between the electron energy and the tagger element hit depends upon
the magnetic field strength of the tagger dipole magnet and upon the energy of
the electron beam. Between beamtimes the energy of the electron beam is very
stable, however, from beamtime to beamtime the magnetic field strength can
vary slightly. Over the course of a single beamtime the field is usually stable.
The calibration of the tagger energy is carried out using the ugcalv2ua [106]
program. The magnetic field map and the electron beam energy are fed into this
program. The program then associates electron energies with tagger channels.

The calibration can be tested by changing the electron beam energy and feeding
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this electron beam into the tagger magnet with a very low intensity. If this is
done without a radiator present then the beam should feed directly into the focal
plane detector, if the calibration is correct then the element that will trigger

should correspond with the energy of the beam provided.

7.3 Other Calibrations

7.3.1 PID Light Attenuation

The PID elements are relatively long, thin pieces of plastic scintillator. The
readout of each element is carried out via a PMT at one end of the element, light
is attenuated as it travels along the element to the PMT. Because of this, a particle
of a given energy that is incident upon the PID will produce a different signal
depending upon the position along the length of an element that the particle
hits. To correct for this, a light-attenuation correction (referred to in the A2

collaboration as a “droop” correction) must be applied.

To carry out this correction individual protons incident upon the PID are selected
across a range of angles. For a given angle an F-AF plot is created. This plot is

fitted with the Epip = f(Fcp) curve determined from Monte Carlo simulations

of protons incident upon the PID and CB. The quantity ffgég) is determined
and plotted as a function of the hit position of the particle along the PID, L.
L is a function of the polar angle, #, the distance to the target centre from the
lightguide, Tj, the inner radius of the PID, Ry, and the position of the event

vertex (along the z-axis) in the target, V. From these quantities L is defined via

Ry
L=T,+V . 7.10
ot 0+tan9 ( )

The plot of fl(fgé - j as a function of L is fitted with a straight line to parametrise

the droop as seen in Figure[7.8] The values of the light attenuation constants are
tabulated in Appendix [D}

This correction for the PID was carried out by Mikhail Bashkanov at the
University of Edinburgh.
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7.3.2 PID Azimuthal Angle Calibration

The PID is moved in and out of the Crystal Ball on a fairly regular basis. For
example, the PID needs to be removed if any work needs to be carried out on
the MWPC or the target. When it is replaced the correlation of PID element
to azimuthal angle, ¢, may be different. To correct for this, events with exactly
one hit in the PID and one hit in the CB are examined. The ¢ distribution
in the Crystal Ball is examined and the coincidence peak is found. In addition
to the clear coincidence peak, there is also a smaller peak 180° separated from
this. This peak is due to reactions that have produced a charged and a neutral
particle back to back. Reactions where this occurs and the charged particle is
not detected in the CB, but is detected in the PID (and vice versa for the neutral
particle), produce a “false” coincidence peak. To reduce systematic uncertainties,
the PID element numbers are plotted as a function of ¢ and a linear function is
fitted to this distribution. From the fit, the angular position of each individual
element can be determined. This correction for the PID was carried out by Chris

Mullen and other A2 collaboration members at the University of Glasgow.
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Chapter 8

Event Selection and Discussion of

Systematic Uncertainties

8.1 Event Selection

The procedure used to identify events of interest for the determination of the

observables ¥ and C, is outlined in the following subsections. After the selection

cuts detailed in Sections [8.1.2| and [8.1.3] are applied to the data, a background

subtraction procedure is applied to remove contributions from random events.
The procedure and purpose of this subtraction is detailed in Section [8.1.1]

The analysis of experimental data is carried out using various pieces of code
based upon the CERN ROOT language [148] and is a multi-step process. The
first step is to read and sort the raw data files. This is done by the AcquRoot
software developed by the A2 collaboration [149]. The output of Acqu provides
information on an event-by-event basis. This output is then processed further
using the A2GoAT software [I50]. This software allows for particle reconstruction
and further data sorting into new analysis trees. A2GoAT can then be used again
to carry out further physics analysis of the initial output [I51]. These physics
files can then be analysed further using CERN ROOT macros [152]. This chapter
outlines the various cuts and event selection procedures that are applied to the
data in the second and third (A2GoAT) stages, as well as the fitting procedures

used in the final stage to extract quantities of interest.
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Figure 8.1 Tagger timing distribution with the prompt peak clearly present. The
prompt (red) and random (green) windows used are illustrated on the
plot.

8.1.1 Random Subtraction

This section discusses the random subtraction method employed in the analysis.
Within the timing coincidence window for an event, numerous electrons will be
detected in the focal plane of the tagger. Only one of these electrons will be
responsible for producing the bremsstrahlung photon that reacted with the target
to cause the detected event. Photons associated with other tagged electrons
within the event timing window may have been absorbed in the collimator or
simply not have interacted with the target. Knowing which electron produced the
event photon is vital for calculating any information that is dependent upon the
photon energy. It is impossible to determine exactly which electron is responsible
for the event photon. Instead, a random subtraction can be applied to the data to
remove the contribution of any ‘random’ photons. A timing coincidence is used
whereby tagger hits recorded within a 25 ns window of the event are classified
as ‘prompt’. Any events outside this window are ‘random’ events. As can be
seen in Figure there is a clear peak in the prompt region and a relatively
flat background of random events outside this. Some random events also occur

within the prompt region, these events must be subtracted.

To subtract the contribution of random events in the prompt peak, events are

sampled from three regions, the prompt peak, a random window to the left of the
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prompt peak and a random window to the right of the prompt peak. The width
of these regions is used to determine the prompt versus random ratio (R,,) using

the relation

P

R’LU == —7
Riow + Ruigh

(8.1)

where P, Rpiow and Rpign represent the widths of the prompt and random
windows. In the analysis detailed in this chapter P has a width of 25 ns (-5
- 20 ns) and the two random windows were each of width 100 ns (Rpew = -120
- -20 ns and Rpign = 35 - 135 ns), giving a R,, value of 0.125. Data analysis is
conducted for all photons tagged in an event. The random events are used in

combination with R, to re-scale the prompt events via

N, = N, — N, R, (8.2)

to remove the contributions of random events. In Equation , N, is the
number of prompt events, N, is the number of random events, R,, is as defined
above and N; is the ‘true’ number of prompt events after random subtraction.
This random subtraction procedure is carried out at the end of the A2GoAT
physics stage of the analysis for all events. This process is crucial to accurately
determine parameters that are strongly dependent upon the incident photon
energy. The missing mass (discussed further in Section is one such example,

as can be seen in Figure 8.2
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Figure 8.2 An example missing mass distribution for prompt (red) and random
(blue) photons. As discussed in Section events of interest
should show a peak at MM, ~ 940 MeV. This peak and a peak at
higher missing mass (background contribution) can clearly be seen
in the prompt spectrum. Random events are smeared over a range
of missing mass values.
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8.1.2 Analysis of ¥

As discussed in Chapter [3] the beam asymmetry observable, ¥, is a single
polarisation observable that is dependent upon the linear polarisation of the
incident photon beam. This single polarisation observable quantity is not
dependent upon the proton or neutron from the photodisintegration reaction
scattering in the polarimeter. As such, to extract X from the data, any yd — pn
events can be analysed. Events where both the proton and neutron are not
scattered in the polarimeter were analysed to extract 3. A cut that ensures the
reaction products are coplanar in ¢ can be utilised to ensure the detected tracks

were not scattered by the polarimeter.

Y. Selection Cuts

Initial event selection is applied at the first stage of the GoAT analysis. Here
there is a requirement that events have two particles detected in the CB and that
their total energy is above 100 MeV. Particle assignment is carried out in the
physics analysis stage of GoAT. The first requirement is that of the two particles
detected, one is charged and the other is neutral. This determination is based
upon the detectors that register a hit for this particular particle track. A particle
is taken to be charged if it registers a hit in the PID, MWPC and CB detectors.
A particle is taken to be neutral if it only registers a hit in the CB. At this stage

the charged track is assigned to be a ‘proton’ and the neutral track is a ‘neutron’.

The next selection cut that is applied is a cut on the vertex position along the
z—axis for the ‘proton’ track. Any tracks with the proton vertex position outside
of -60 mm to 60 mm are removed (see Figure . The target cell is 100 mm
long and is centred at 0 in the analysed distributions, the cut is slightly broader
than this to allow for uncertainties in the reconstruction of the vertex. This cut

ensures that only events that originate from within the target cell are retained.

Due to the kinematics of the reaction, the two particles produced should be
coplanar in ¢. A cut is applied that removes any events where the difference in
¢ between the two tracks is outside of (180+15)° (see Figure[8.4). Again this cut
is deliberately slightly broad to compensate for any uncertainty in the measured

¢ values of the tracks.

To clean the event sample further, a graphical cut is applied to a plot of dE,(E,).
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Figure 8.4 Distribution of A¢ between the proton and neutron tracks with
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produced.
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Figure 8.5 Plot of the energy deposited in the Crystal Ball, Ecp, as a function
of the energy deposited in the PID, Epip, for the proton tracks. The
graphical cut region that is selected out is outlined in red.

This is a plot of the energy deposit for the proton track in the PID (dE,) as a
function of its energy deposit in the CB (E,). As described in Chapter different
types of charged particles leave deposits in different regions of this plot that are
characteristic of the type of particle produced. The graphical cut applied selects
out the proton region and removes any events where the charged track lies outside
of this region as shown in Figure[8.5] As can be observed, this cut removes pions
from 4p — nzt reactions, which also produce coplanar neutral and charged
tracks. The points on the cut were chosen by fitting a Gaussian to the projection
of the 2-D distribution onto the y-axis and taking the mean minus 20 of this fit
for the lower level of the cut. This was done in roughly 50 MeV slices for the
region 100-300 MeV. In this region, the cut was also adjusted to be o on the lower
level if 20 was within one o of a similar fit for the pion band. The upper level of
the band was taken to be yu + 20.

After these initial data cuts, the remaining events are analysed in more detail and
many new quantities are calculated before further cuts are applied. Many of these
quantities are dependent upon the incident photon energy. These quantities must
be calculated for every photon associated with the event (see Section for
more on this). One of the first quantities to be calculated is the kinetic energy of
the proton based upon the event kinematics. Knowing the energy of the photon
beam, the mass of the target and produced particles, along with the proton polar

angle, 6, the proton kinetic energy can be calculated from the event kinematics.
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Figure 8.6 Plot of the calculated kinetic energy, Epkin, as a function of the
energy deposited in the PID, Epip, for the proton tracks after the
selection cut has been applied. The graphical cut region that is
selected out is outlined in red.

This energy, Fkin, is utilised in a further cut in combination with the PID energy.
This is plotted as dE,(Exin) and a further graphical cut is used to check that the
proton is within the expected region of the plot based upon its expected energy
from the kinematics. Any events with proton tracks outside of this graphical cut
are removed (Figure . The shape of this fit was chosen by carrying out a

similar procedure to the initial Ecg-dEpp cut.

Assuming that the information on the proton track is correct, the neutron track
can also be ‘reconstructed’ by utilising four-momenta conservation. If the target
is taken to be at rest and the photon beam is assumed to carry momentum only

along the z—axis, then the four-vector of the neutron, n,.. is given by

Nyee = (d+7) — P, (8.3)

where d and 7 are taken to be
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C_l = (0,0,0,md) (84)
= (0,0, E,, E,y), (8.5)

with mgq = 1875.613 MeVc™2 and p being the four-vector of the detected
(unscattered) proton. From this four-vector, quantities for the ‘reconstructed’
track can be calculated. Crucially the ‘mass’ of this particle can be determined
from this reconstructed particle. This is the ‘missing mass’ of the reaction had
only the proton been detected. As this reconstructed track is expected to be a
neutron, a cut is applied on this missing mass quantity. A broad cut of any events
with missing mass outside of 800-1300 MeVc ™2 is applied initially. Cuts are then
applied to the missing mass based upon the incident photon energy, £,. This
is due to the increasing broadening of the missing mass peak and the increasing
background contribution (which also broadens) as E. increases (see Figure .
From this figure it is clear that due to the broadening of the background peak at
high E., some background events may be leaking into the “signal” event peak.
The contribution of this background and how to subtract it correctly should be
investigated further as a potential source of systematic uncertainty. In the region
of B, = 200-800 MeV a variable cut on the missing mass is applied. Gaussians
were fitted to the missing mass distributions (without a cut) for 10 £, bins in the
range specified above (see Figure . The mean, p and standard deviation, o,
from these fits were used to apply a cut on any events outside of (1 =4-20) MeVc™2
in each energy bin. For any events outside of this 200-800 MeV photon-energy
range, a cut of (u420) MeVc ™2 was applied based upon p and o from a Gaussian

fit of the missing mass distribution for events of all photon energies.

Another quantity that can be determined from n . is the reconstructed 6 angle,
Onrec, for the track. This angle is calculated assuming that the vertex position
of the neutron track is equal to that of the measured proton. Because the
events analysed for the determination of ¥ are expected to be events without
any scattering events in the polarimeter, 6, should be equal to 0, eas- In the
calculation of @ymeas the vertex position is assumed to be (0, 0, 0). Due to the
angular resolution of the detectors and the potential for elastic scattering in the
polarimeter or detectors these two quantities are unlikely to be exactly equal.
Nonetheless, they should be very similar and a cut can be imposed upon the

difference between 0. and G meas to refine the event selection. In the case of
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for B, = 225425 MeV with a Guassian fit applied to the peak.
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Figure 8.8 The missing mass calculated from the proton track vector as a

function of the incident photon energy, E,. The ~940 MeV signal
peak broadens as E increases. A background peak begins to appear at
E, ~ 350 MeV. Note that the z-axis of this figure is in a logarithmic
scale.
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this work, any events with €,meas — Ouree greater than 4+ 15° were excluded (see

Figure [3.9)).

8.1.3 Analysis of C,.

The observable C,. is the components of the recoil polarisation in the z’ plane.
The extraction of this observables requires the analysis of recoil particles from
scattering events in the polarimeter. Compared to the analysis of 32, the selection
procedure is more involved and the available statistics are smaller. The selection

cuts used to identify events of interest are outlined in the following section.

C, Selection Cuts

The initial event selection is again applied at the first stage of the A2GoAT
analysis. The requirement at this stage is for two particles to be detected in the
CB with a total energy sum of over 100 MeV. Particle assignment is again applied
at the physics analysis stage of A2GoAT, but it is here that the analysis method

diverges significantly from the X analysis.

For vd — pn events with a subsequent charge-exchange scattering reaction in the
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Figure 8.10 Z, distribution for proton tracks with the -60 mm to 60 mm cut
region shown. The window of the target cell can clearly be seen in
this distribution as the small peak centred at ~170 mm.

polarimeter, two tracks should be observed. One of these should be an unscattered
proton and the other should be a proton from the charge-exchange reaction. For
the track of the unscattered proton, hits should be registered in the PID, MWPC
and CB detectors. For the charge-exchange proton, hits should only be detected
in the MWPC and CB. This is due to the positioning of the graphite polarimeter
relative to the PID and MWPC detectors. As the polarimeter is placed after
the PID, the neutron should not undergo a scattering interaction until after it
traverses the PID. Any events where the two tracks do not have these detector

hit combinations are removed. This selection process can easily be understood
by referring to Figure in Chapter

The tracks are assigned to be the proton and ‘neutron’ track. Following this
assignment a cut on the Z vertex position, Z,, of the proton track is imposed. As
this track is expected to be from an unscattered proton, it should have a vertex
within the target cell. The same cut as for the analysis in Section [8.1.2]is applied
and any events with Z, outside of -60 mm to 60 mm are removed (see Figure
. After this, a graphical cut is applied on a plot of dE,(E,). This is again
done in the same manner as for the ¥ analysis (see Figure . As the C,
analysis extends to higher photon energies than the ¥ analysis, the PID cut was

loosened above 300 MeV to ensure higher energy photons were not lost.

Following the preliminary cuts detailed above, the events are analysed on a
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Figure 8.11 Plot of the energy deposited in the Crystal Ball, Ecp, as a function
of the energy deposited in the PID, Epip, for the proton tracks. The
graphical cut region that is selected out is outlined in red.

photon by photon basis. The missing mass is calculated as outlined in Section
Again a rough cut on 800-1300 MeVc=2 is applied. This is followed by
energy dependent missing mass cuts (as detailed in Section based upon
Gaussian fits to the missing mass distributions in bins of 50 MeV (see Figure[8.12).
However, due to a lack of statistics in the higher energy range (above 500 MeV)
Gaussian fitting could not be performed accurately. A cut of (u 4 20) MeVc ™2
based upon a fit to the missing mass distribution across all E, was used for any
events outside of this £, = 200 - 500 MeV range.

To ensure that the scattering event occurs inside the polarimeter, a cut is applied
based upon the ‘Point of Closest Approach’ (POCA) of the scattered proton
track and the reconstructed neutron track from four-momenta conservation.
Considering two tracks and defining the point, z,, as a point along the track,
4, as the initial unit vector of track ¢, v, as the initial vertex of track ¢ and ¢; as

a scalar constant for track ¢ then z; can be defined as

z, =v; + tz@l (8.6)

The ‘Distance of Closest Approach’ (DOCA) occurs at the point where the

distance between the two tracks,
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Figure 8.12 The missing mass calculated from the proton track vector, MM,
for E, = 275125 MeV with a Guassian fit applied to the peak.

Az =z — 2y, (8.7)

is minimised. For this value to be minimised (at the point of closest approach)

the following condition is imposed

a; - Az = 0. (8.8)

From this requirement a system of two equations with two unknowns, ¢; and t,,

can be constructed. Solving for ¢; and t, yields

Av - [Q1 - @2(@1 @2)]
(4 - y)* — 1

t _ Ay ' [Ql(@l : @2) - @2] (8 10)

’ (@1 '@2)2 -1 ’ '

ty = and (8.9)

where the term Aw is given by
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Av = v, — U, (8.11)

With the calculated values for t; and t, the point of closest approach can be
determined from the midpoint between the two points z; and z, calculated from
Equation . Events of interest should have a reconstructed scattering point
(POCA) within the volume of the polarimeter. A selection cut is imposed upon

the radius of this scattering point,

rPoca = \/Tpoca + Yboca (8.12)

with any events yielding rpoca less than 35 mm removed (see Figure . The
positions of various detector components are coloured in this figure. Shown in
Figures and are the distribution of DOCA values and the values as a
function of rpoca respectively. As can be seen in these figures the DOCA value
is peaked at 0 with some width due to the vertex resolution, this implies that the

remaining tracks intersect and a further cut on the DOCA values is not necessary.
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Figure 8.14 DOCA distribution showing a clear peak at 0 with some width
due to the resolution of the wvertex determination and track

reconstruction.
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Figure 8.15 DOCA as a function of rpoca distribution after the cut on rpoca .-
A clear band at low DOCA is apparent.
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Figure 8.16 0s. distribution of scattered neutrons with the 45° (% rad) cut point
marked.

A selection cut is applied on the polar scattering angle, fs., of the neutron. This
is the angle @ of the recoil particle in the (z’,3/,2") plane as defined and shown in
Section Any events with 6. greater than 45° are removed (see Figure .
The purpose and reasoning for this cut on fs. are discussed in Section |8.2.2, The
azimuthal angle in the scattered frame, ¢, is also calculated at this point. No
cuts are imposed on ¢g. as it is required to extract the desired observables, the
distribution of ¢g. for each beam helicity integrated across the full range of £,
can be seen in Figure [8.17]

For analysing the neutron scatter events in the polarimeter a final E-dFE style cut
is implemented. For this the MWPCs are utilised as the ‘dE’ component. For a
‘hit” to be registered in the MWPCs for a given track, a minimum of one of the
chambers was required to register a hit. Each chamber has a detection efficiency of
roughly 70% for protons. The total signal in the MWPCs is calculated separately
for the case of one chamber or two chamber hits. The total MWPC signal is
calculated for each track and a path length correction is applied by multiplying
the total energy deposit by sin 6.

For the proton track the sample of events is already very clean after the
application of the PID E-dE cut. However for the ‘neutron’ track there is a
small narrow band of events present on FE-dFE plots derived using the MWPC
and CB information as can be seen in Figure A projection of the 2-D
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Figure 8.17 ¢g. distribution of scattered neutrons for positive (blue) and
negative (red) photon beam helicities. These distributions are
integrated over all photon energies, small deviations between the
two distributions are observed but further binning is required to
form useful asymmetries.

distribution onto the y-axis was taken for this plot and the narrow band was
fitted with a Gaussian. This fit was used to set a lower limit (taken as u + 20)
for the acceptable minimum MWPC energy deposition. This process was applied

separately for events with one or two chambers registering hits.

8.1.4 Summary

The effect of each selection cut on the analysis of the data is evaluated in Table
8.1l This tables presents the number of remaining (i.e. after the previous cut
has been applied) events removed by each selection cut. This is presented for the
> analysis and the C, analysis. The total number of events remaining after all

selection cuts and random subtraction procedures is tabulated in Table [8.2]
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Figure 8.18 The total signal (adjusted for path length), effectively an
uncalibrated energy, in the MWPCs as a function of the energy
deposition in the Crystal Ball. This plot is for events where the
scattered proton has produced a signal in both MWPCs. A line
illustrating roughly where the cut is applied is also shown.

Table 8.1 The percentage of remaining events removed by each selection cut for
the analysis of X and Cyr. Le. for X after the track selection cut, the
Zy cut removes 11.3% of the events that remained after the cut on
track selection.

% Remaining % Remaining
3 Analysis Cut Events Removed Cy Analysis Cut Events Removed

by Cut by Cut
Track Selection 91.5 Track Selection 98.5
Zy 11.3 Zy 17.7

A¢ 53.5 E-dE 50.45
E-dE 38.4 MM, 71.6
EKin —dFE 10.5 TPOCA 69
MM, 50.6 Os 29.3

A6, 9.5 MWPC E-dE 3.54

Table 8.2 Owerall number of events integrated across all energy bins for each

analysis
# Events 3 Analysis # Events C,, Analysis
5200192 455567
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8.2 Observable Extraction

8.2.1 Overview of > Extraction

After the event selection procedure detailed in Section is carried out the
remaining events are used to fill various histograms. As discussed in Section [3.3]

Y. can be determined experimentally by taking the ratio

NH(%) — NL(‘ﬁp)
Nl(¢p) + N+ (¢p)

= pgnE cos(20), (8.13)

where ¢, refers to ¢ of the measured proton track in the lab frame. 3 is given
by ¢, + 7. This is due to the fact that the two polarisations measured in the
experiment are not actually exactly parallel and perpendicular to the laboratory

frame. Rather they are at +45°, as such the value of ¢ is 7. Histograms of
the asymmetry (left hand expression of Equation (8.13])) as a function of ¢, were
constructed from the data. These were obtained for bins of F., and cos 0cy. There
are 21 F,, bins, each 10 MeV wide ranging from 410 to 620 MeV. This is the range
of E, over which the beam has appreciable linear polarisation (~0.1-0.47). For

each £, bin there are 20 bins in cos fcy between -1 to 1.

As outlined in Section [3.3] ¥ can be determined by fitting the histograms with a

function of the form

f(5) = Po(cos(26, + 7). (8.14)

where the fit parameter Py is the value pgnZ directly. The parameter from this fit
is extracted and divided by the linear polarisation value (taken at the center of
the energy bin analysed) to calculate a value for 3. These values are then plotted

as a function of cos fcy for each £, bin.
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8.2.2 Overview of C, Extraction

As discussed in Section 3.4 C;s and p, can in theory be extracted simultaneously
from the data by examining the asymmetry defined by

7(¢Sc) - N+(¢Sc) o AEffp'Gy)Cx’ sin ¢Sc
“(¢se) + N*t(¢se) 1+ Aggp, cos dse’

==

(8.15)

where N refer to the number of scattered events (as a function of ¢s.) for events
with positive and negative photon beam helicity respectively. As discussed in
Section m p? is the degree of circular polarisation of the photon beam and is
given by [113]

pS X By x (Ee- + %(Ee— —E.))

@ =
E? +(E.- — E,)? - %Eef X (Ee- — E,)’

Py

(8.16)

with the terms in this equation as defined in the earlier section. The term Agg in
Equation is the effective analysing power of the scattering charge exchange
reaction between the neutron and carbon polarimeter. Agg was determined on
a bin-by-bin basis as discussed in Section [3.4.1l The resulting values of Agg for

each energy and angular bin are shown in Figure [8.19|

The reasoning for the cut on fg. is related to the variation of A, (see Figure |3.3]).
At fg. ~ 45° A, changes sign, including data from both sides of this line would

effectively ‘dilute’ the effective analysing power of the data sample.

To evaluate the values of Cp and p, the ¢g. values of any events remaining
after selection cuts are used to fill a collection of histograms. Histograms are
filled independently for each helicity and are binned in E, and cosfcy. Due to
the more limited statistics available for the scattered data there are only eight
100 MeV wide E, bins in the range 200-1000 MeV used in the analysis of the
data. For each energy bin there are five bins in cos ¢y between -1 and -1. The

analysis was also repeated with three bins in cos fcy between -1 and -1.

Histograms of the asymmetry (defined by the left hand side of Equation ({8.15]))
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Figure 8.19 Agpg used to determine C, for each energy and angular bin
examined. The value of Agg is represented by the colour scale
included.

binned in E, and cos fcy are constructed. The resulting asymmetry histograms

are fitted with a function of the form

P sin ¢,

fose) = T4 Py cos os.” (8.17)

where the parameters P, and P can used to extract C, and p, respectively.
This is done by dividing the respective fit parameter with AEﬁp$ (Py) or Agg
(P,). Due to the available statistics, it was not possible to accurately extract
both parameters simultaneously. As such, P, was fixed in order to extract C,.
The value that P, should be fixed at was examined and is discussed further in
Section . By carrying out a Taylor expansion of Equation with respect
to P, cos ¢g. it can be shown that this term should have a very small effect on

the determination of P;.

For the analysis of C,/, it is not only the events from production runs using
the amorphous moeller radiator that can be used. During linearly polarised
photon production runs using the diamond radiator the helicity of the electron
beam is still being flipped. By combining the two opposite linear polarisations
(after scaling to ensure there an equal number of events from each) an effective

“unpolarised” (in a linear polarisation sense) set of events can be recovered. These

123



can be analysed to extract C,..

8.3 Systematic Uncertainties

This section discusses potential sources of systematic uncertainties that may affect
the final results. Potential sources of systematic errors are considered for the
analysis of ¥ and the analysis of Cy. Some potential uncertainties are shared

between the two analyses but will need to be assessed individually in each case.

For the analysis of 3 there are several potential sources of systematic uncertainty
that can be introduced when experimentally determining the observable. Some of
these sources were briefly discussed in Section [3.3 As mentioned in this previous
section, the fit that is used to determine X is a function that is constructed based
upon several assumptions. The assumption that the polarisation in the parallel
and perpendicular case is equal (pg = pﬂf = p,) can introduce a systematic
uncertainty if this is not true. The value of the ¢ offset, ¢y, also has the potential

to induce systematic errors in the value of X.

Another assumption was that the acceptance would be constant within each ¢
bin. If this is not true then the choice of the ¢ bin width can potentially impact
the value of ¥. Additionally, as discussed in [30] a correction factor due to the
¢ bin width can be approximated to be SinA[E - With 20 bins in ¢ this yields a
correction factor of 1.017, a very small effect.

For the experimental extraction of C,/, there are also several potential sources
of systematic errors. As in the X case, the various acceptances are a potential
source. The assumption that the polarisation of each helicity is equal is a further
consideration. However, potentially the largest source of systematic errors for
the analysis of C,/ is the value of Agg that is used in the analysis. The value
used to extract C, is based upon averaging over a relatively broad angular and
energy bin. This value is also chosen under the assumption that the reaction can
be treated as an interaction with a quasi-free n,p interaction with a proton in
the graphite polarimeter. As discussed in Section the analysing power for
quasi-elastic processes can differ significantly from the analysing power for elastic
scattering processes. The deviation of the value used from the “true” quasi-elastic
analysing power should be analysed further as a potential source of systematic

uncertainty.

124



Both analysis threads share one large potential source of systematic uncertainties,
event selection cuts. The width, shape and choice of the selection cuts utilised
may all induce a systematic uncertainty in the final results. Some of the selection
cuts are also correlated (e.g. missing mass and the A¢ cut). Ideally the effect
of all uncorrelated selection cuts should be studied prior to publication of the
results. The contribution of physics background events should also be studied.
Due to time constraints only an assessment of one selection cut, the missing mass,
was analysed for the ¥ analysis. Assessment of the effects of the other selection

cuts is in progress.

To assess the impact of systematic uncertainties introduced due to the choice
of the missing mass selection cut, the analysis was carried out utilising two
different cuts on the missing mass. These two cuts correspond to p + o and
p £ 20 for the missing mass (see Section [8.2.1). Due to the increase in statistics
in the u + 20 data this cut was used in the final analysis. To produce an
estimate of the systematic uncertainty from this choice of missing mass cut, the
difference between the values of ¥ using different cut widths was investigated.
The differences are presented in Figure |8.23] The mean and root mean squared
(RMS) values of these plots are taken to be an estimate of the systematic error
for the illustrated E, bin.

As outlined in Section [8.2.2| asymmetries between the yields from the two photon-
beam helicities are used to extract C,,. The limited statistics available for
constraining this function (Equation (8.17))) meant that a simultaneous extraction
of Cp and p, was not possible with this first data set. Because of this the p,
component was fixed in order to extract C,,. To assess possible systematics in
using this method, p, was fixed to be either 0 or an estimated value based on p,
extracted from a parallel unpolarised beam method [147]. The data used a fitted
function as employed in [I0I]. The fit was also carried out with p, free to vary
but constrained to within the physical range. An example of the fits resulting

from these three different methods of constraining p, is presented in Figure [8.20]

Values of C,, were extracted from these fits and plotted as a function of E, and
as a function of cosfcy. The resulting values using all three fit methods as a
function of E, for the three and five cosfcy bin cases can be seen in Figures
and respectively. As can be observed in these figures, the method of
constraining p, does not generally have a significant impact on the resulting value
of Cy.
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Figure 8.21 Asymmetry in ¢s. between the two photon beam helicities for
scattered neutrons in one 100 MeV wide E bin. Demonstrated on
the plot are three fits to the data with differing values for the second
parameter (that relates to py) either fixed or limited respectively.

Potential sources of systematic errors that should be considered and assessed prior
to publication of the data are listed in Table [8.3] for the 3 analysis and Table

for the Cy analysis. The current status of the assessment of each source is also
listed in these tables.
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Table 8.3 Potential sources of systematic uncertainties on X% that should be

considered and the status of their analysis.

Source of Systematic Uncertainty

Status

Track Selection
Z, Cut
E-dE Cut
EKin’dE Cut
MM /A¢/AB, Cut
¢ Binning
Fit method
Flux normalisation
Acceptance
oo Fit offset
Photon Polarisation
Background subtraction

To be analysed
To be analysed
To be analysed
To be analysed
Analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed

Table 8.4 Potential sources of systematic uncertainties on Cy that should be

considered and the status of their analysis.

Source of Systematic Uncertainty

Status

Track Selection
Z;, Cut
E-dE Cut
MM Cut
TPOCA Cut
98(: Cut
MWPC E-dE Cut
¢sc Binning
py Value
Fit method
Acceptance
Photon Polarisation
Analysing power
Background subtraction

To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
Analysed
To be analysed
To be analysed
To be analysed
To be analysed
To be analysed
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Chapter 9

Results

The results for ¥ and C,, are presented in this chapter. The results obtained and

outlined in this section are tabulated in Appendix [E]

0.1 Y Results

As discussed in Section [8.2.1] asymmetries between the yields for the two linear
polarisations were produced and fitted with a cos2¢ asymmetry to extract X.
An example fit of the form defined by Equation can be seen in Figure [0.1]
Due to the presence of a dead tagger channel, the E, bin centred at 555 MeV did
not contain any data. As such it was excluded from further analysis. Extracted
values for ¥ are shown for the twenty remaining E, bins in Figures[9.2)- [9.6]

The systematic error (estimated from the difference between the missing mass cuts
as discussed in Section is shown as a solid band at the bottom of each plot.
The magnitude of the difference between -1 and the top of each bar represents the
value of the systematic error. The error bars on the points on these plots indicate
statistical uncertainty in X, oy, due to the uncertainty in the fit parameter, op,,

and the uncertainty in the linear polarisation of the beam, Opiin. Oy is given by

2 P ) 2
op, 00 lin
o2 = ( 113) + ( 1152) ) (9.1)
ph (plin)
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Figure 9.1 Ezample fit of Po(cos(2¢ + 7)) to the asymmetry between N”(d)p)
and N+ (¢p) for the extraction of ¥. This is one 10 MeV wide bin

in By for cosOcym = -0.2 - -0.3. Fit parameters are included in the
top right.

where o, has been determined to be 3 % [153]. However it is worth noting that

oy, is generally dominated by the impact of the value of op,.
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As a cross check, 3 was also calculated for data in which an (n,p) scatter is
observed in the nucleon polarimeter. In the analysis of the scattered data it is
assumed that the proton from the photodisintegration reaction does not scatter
in the polarimeter. If this assumption is correct, protons from the scattered data
should also be analysable to extract ¥. This analysis provides a further test of
the results and serves as a check on the quality of the event selection procedure
for the scattered events. Due to the reduced statistics available, the number of
angular bins was reduced by a factor of four and the number of photon-energy

bins by two.

The results are superimposed as shown in Figure [9.7 Due to the halving of the
number of E, bins in the scattered event analysis, each set of scattered results is
presented in comparison to two consecutive £, bins for the non-scattered analysis.
Overall the two sets of results are generally in good agreement. The results for the
scattered event analysis clearly have a larger uncertainty but this is to be expected
from the considerable reduction in available statistics. This concurrence of the

results provides validation of the selection procedure for the scattered events.
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Figure 9.8 X at Ocm = 90°. Results from this work are presented alongside
results (multiplied by -1) from work by Adamian [15)] and Gorbenko
155)
/

There are a limited number of previous data points available from measurements
of ¥ within this energy range from work by Adamian and Gorbenko [154] [155].
The data points from Adamian are superimposed on the results from this work in
Figures[0.9-[0.11] The values for ¥ at ey = 90° are presented in Figure[0.8] Note
that there is no bin at this angle in this analysis. The value plotted is a weighted
average from the bin either side of this point. Because of a different convention
used in calculating the asymmetry for the previous data (N+ — NI, these data
have been multiplied by -1 to compare with the new data. The previous data
points are in excellent agreement with the results from this analysis. However,
this new data provides a far more comprehensive measurement of > across the

energy range of interest.
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9.2 (. Results

As discussed in Section the choice of value for p, (and therefore P) in
Equation does not have a large impact upon the determined values of the
fit parameter P;. P is utilised to determine C,,. C, was determined separately
using each fit method outlined in the previous section. The resulting values using
all three fit methods as a function of E, for the three and five cos 6y bin cases
were presented previously. These values are presented again here for completeness
and can be seen in Figures and respectively. The extracted C, as a
function of cos ¢y is presented in Figure . For clarity only the fixed p, = 0
fit method is presented in Figure

Although the statistical accuracy is poor in certain kinematic regions, the new
data gives first indications of the trends in C,/ for deuteron photodisintegration
at low photon energies. This is the first examination of C,, for the final state
neutron in this reaction. When presented as a function of E, (as in Figure
the most statistically well defined bin is the 108-144° bin. For the most backward
angular bin (144-180°) there are signs that C,» may be negative in the region
of the A. When presented as a function of cosfcy (Figure at low photon
energies (in the region of the A) there are indications that C,/ is largely negative
but with hints of more positive values at extreme forward and backward angles.
Similar behaviour is also observed in the higher photon energy bin which covers
the region of the d*(2380) (500-600 MeV). For the three highest energy E., bins
there are very limited statistics but there may be signs of a very rapid change in
Cy.
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Chapter 10

Interpretation of Results and

Discussion

This chapter introduces a preliminary interpretation of the results for . This is
followed by a discussion on the potential consequences of these results and further

avenues for future investigation.

10.1 Interpretation of > Results

An initial attempt to examine the angular dependence of the measured values of
>} was undertaken. The polarisation observable terms in the polarised differential
cross section expression given in Equation (3.4)) can be decomposed in terms of
associated Legendre functions [I56]. The angular distribution of the ¥ observable

can be expressed as the function

15 105
f(I) = (1 - 1’2) (3P0 + 1513P1 + 7P2<7l’2 - 1) + 7P3(3$3 — 1’)—|—

105 63
?P4(33x4 —182% + 1) + §P5(1433c5 — 1102° 4 15z)

315 495
+1—6P6(143x6 — 143" + 3327%) + 1—6P7(221x7 — 2732° + 912° — 795)) :

(10.1)
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Y(Cosd ) E 545 £ 5 MeV
CM" v

— %27 ndf 11.6/12
08— PO —0.004779 + 0.005589
O p1 0.01599 £ 0.003189
= p2 —0.005017 + 0.002166
06— p3 0.005176 + 0.001699
= p4 —0.002115 + 0.001286
04— p5 —6.533e-05 £ 0.001165
41— p6 0+ 0
— p7 0+ O
02—
W 0k
02—
04—
—0.6 }
-0.8—
4T | | L | |
-1 -0.5 0.5 1

0
Cosbgy,

Figure 10.1 X(cosfcm) in one 10 MeV wide E, bin. The solid line represents
the fit defined by Equation to the data, fit parameters are
included in the top right.

where 2 = cos fcy. An example fit to the data is presented in Figure[10.1] The fit
parameters, Py-Pr, are relabelled to be the parameters P> 1o Where n is the initial
parameter number in the fit, i.e. Py = PZ, P = P} and so on. As can be seen
from the resultant fit parameters (inset on figure) in Figure the 7 (P2) and
8t (P2) parameters of this fit are fixed. With these parameters not fixed, the plot
has too many free variables to fit satisfactorily. The values of these parameters
would also be expected to be very small, as observed in the parameters that are
measured, the values reduce in magnitude from Pj—P?. This function was fitted

to the results for 3 in all of the analysed angular and energy bins as shown in

Figures - 110.6L
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The values of the fit parameters, Pj_,, were extracted for each E., bin. The values
of these parameters as a function of £, are presented in Figure m The variation
of these parameters as a function of the energy will need further theoretical work
to be interpreted further. A brief examination of the energy dependence using a

simplistic model is included in Appendix [G]
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10.2 Discussion and Conclusions

This section will present a first discussion of the results obtained and indicate a

pathway for future analysis to constrain the role of the d*(2380) to the data.

10.2.1 Discussion of > Results

The obtained results for the beam asymmetry, Y, are in good agreement with
the previous measurements of this observable, while significantly increasing the
statistical accuracy and kinematic coverage. The fits discussed in Section [10.1
appear to provide a good description of the data. The analysis presented in this
thesis is just a first step to obtaining sensitivity and constraining the d*(2380)
parameters. In the future, model predictions developed can be compared to
the experimental data and the results of this first associated Legendre function

analysis.

In the past, beam asymmetry data has been invaluable in constraining the
properties of resonant states. For example a multipole analysis has been
undertaken to obtain the E2/M1 transition ratio in the YN — A(1232) reaction
[157]. It would be interesting to explore the use of the new beam asymmetry
() data with other available measurements (e.g. cross section) in order to
ascertain whether sensitivity to the different EM transitions to the d*(2380)
can be extracted. Such transition ratios can in turn be used to extract other
parameters. In the analysis of the A(1232) the quadrupole electric transition

moment, (Q,.), and transition magnetic moment, pya, were calculated via

E2 1 <sz>NA
I AvERIE 10.
ST = g M, (10.2)

where My is the mass of nucleon and k is the photon momentum [158]. In the
reaction yd — d*(2380) it is expected that the transition could proceed via an
E2(27), M3(3") or E4(4™) transition. By drawing analogy to the previous work
it is possible that with further analysis the ratio of these transitions could be
determined for this reaction. From this, further properties of the state could be

determined.
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10.2.2 The way forward to improved C,  data

The measured values of C,/ present a first look at this observable in a previously
unexamined energy range. However, this experiment was a proof of principle
measurement to prove the technique ready for larger beamtimes in the future.
Although the results have large statistical uncertainties the feasibility of the
measurement, has been proved and the analysis gives a solid base to plan future
measurements. It should be noted that the achieved statistical accuracy was

consistent with the expected estimates in the proposal (Appendix [F)).

With the limited beamtime of the experiment it was decided to focus on achieving
a high degree of linear polarisation in the beamtime available. This meant using
a high electron beam energy to achieve the highest degree of polarisation. This
comes at the cost of reducing the degree of circular polarisation for photon
energies in the region relevant to the d*(2380). To improve C, in the future

it may be advisable to use a lower beam energy.

The observed asymmetries in the region examined are expected to be very small
due to the low (as low as 10% in the lowest energy bins) degree of circular
polarisation of the photon beam. It should also be noted that the cross section for
deuteron photodisintegration also falls off rapidly as E, rises beyond 300 MeV
[159]. A longer beamtime would help to improve the available statistics. The
combination of the two data sets should be possible if care is taken to reproduce
close to exact experimental conditions as in the current data. Uncertainties in the
target position, shifts in the PID or MWPC and the polarimeter itself could all
introduce systematic uncertainties into the analysis. There is also the potential
that in future runs the photon beam intensity could be increased. This is due
to the recent installation of the newly upgraded photon tagger at MAMI that is
capable of handling higher rates of events [160].

A significant factor impacting the available statistics for the scattered data is
the efficiency of the MWPC detectors. The efficiency of each chamber for
proton detection is only 70% at most. As such, imposing any conditions where
both chambers produce a signal (which improves the accuracy of the vertex
determination) immediately removes a large fraction of events. If the MWPC
efficiency could be improved in some way, then the vertex determination could

be improved and the number of events retained could be increased.
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10.2.3 Conclusions

This work presented in this thesis outlines the design and construction of a
new recoil polarimeter, which was utilised in a measurement of polarisation
observables in deuteron photodisintegration. This polarimeter includes a newly
built particle identification detector, PID-III. The polarimeter had its first
commissioning experiment in the A2 hall at MAMI in August 2016 and operated
successfully providing polarisation information on final-state neutrons over a wide
kinematic range and with good acceptance. This creates a new experimental
capability for the A2 collaboration at MAMI.

The linearly polarised photon beam asymmetry, ¥, has been measured in the
~d — pn reaction in the photon energy range of 410-620 MeV and across a very
wide kinematic range. The Y data are in excellent agreement with the sparse
previous data in this region. This new measurement of ¥ has expanded the data
set for deuteron photodisintegration considerably and will be a valuable resource
for theoretical studies. Analysis of the £, and angular dependencies of the new
>} data was undertaken, guided by previous theoretical works. Constraining the
d*(2380) resonance from the new data appears possible with further theoretical

studies.

The recoil polarisation observable, C., was also measured in the 7d—pri reaction
for photon energies in the range 200-1000 MeV. This is the first measurement of
C, for the final state neutron. Although the C,. data has a modest statistical
accuracy, it offers a first glimpse of this observable across the energy range relevant
to the d*(2380) resonance. These measurements provide a proof of principle for

the experimental method to extract neutron polarisation observables.

This thesis provides valuable new constraints on the photodisintegration of the
deuteron. As well as constraining our general theoretical understanding of the
process, the data indicate sensitivity to the role of the d*(2380) may be evident
in the data. This is important as it would be the first observation of the d*(2380)
with an electromagnetic probe. EM probes are the key to establishing the nature
of the d*(2380) in the future, particularly to validate its potential hexaquark

nature.
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Appendix A

Phase-1l Polarimeter Schematic

Diagrams

Measurements on schematics are in mm unless stated otherwise.
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Appendix B

Mandlestam Variables

Processes of two particles going to two particles are often discussed in terms of
the Lorentz-invariant Mandlestam variable quantities s, ¢t and u. These quantities

are defined via the following relations where p, is the four momenta of particle 7,

=, —p,)" = (2, —p,)" B2
u=(p, —p)* = (p,—p,)° (B.3)

The sum of the three quantities can be shown to be given by

s+t4+u=m?+mj+mi+m; (B.4)

s, t and u are also often used to describe reaction channels. These channels
correspond to different Feynman diagrams for the scattering process. The
exchange particle involved in the process has four momenta squared is equal to
the Mandlestam variable corresponding to the channel of the process. Feynman

diagrams for the three channels are shown in Figure [B.1]
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Figure B.1 Feynman diagrams representing s, t and u channels respectively
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Appendix C

Polarisation Observables in YN

Reactions

Analytical calculations of s-channel photon nucleon (yN) processes are often
discussed in terms of s-channel helicity amplitudes. If we consider vN interactions
the v and N each have two helicity states. As such we have four helicity
amplitudes for helicity transitions in the interaction. These four amplitudes
correspond to single helicity flipping (S; and Ss), double helicity flipping (D) and
no helicity flipping (N). These helicity amplitudes relate to a set of transversity
amplitudes via the set of relations [164] given by Equations -[C4). Note

that these transversity amplitudes are complex quantities.

b = 51(S1 +82) +i(N ~ D)] (C.1)
b= 21(S) +85) —i(N — D)] (C2)
b= 51(S1 — S2) — i(N + D)] (©3)
b= 51(S1 — $2) +i(N + D)] (C.4)

Taking bilnear combinations of these four transversity amplitudes produces
16 real quantities. These real quantities are measurable and are referred to
as polarisation observables. These 16 observables are summarised in Table

[C.1] Measurements of these observables may require complex combinations of
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Table C.1 Polarisation Observables

Typical - . Transversity Measurement,
Symbol Helicity Representation Representation Needed
o/t INP+S1P+S2*+DI* - [by]? + [b2]* + [bs[* + [ba]* {3}
Lz 0+ )
% 2R(S;S, — ND* bl - [Baf? — [ba — baf2 V50
(5752 ) |01]% + [ba|* — [b3]* — [b4] Co)
) * _ * 2_ho|2 b |2 2 {—y—}
i x _ * 2 _|p|2 2 _|p |2 Y
G —2$3(5155 + ND*) 23(b b5 + bab}) {L(£%,0); 2}
E ‘SQ|2_|51|2_’D‘2+’N’2 —2%(b1b§+b2bi) {C;Z;f}
F 2R(Se D* 4+ S1N*) 23(b1 b5 — bab}) {¢;z;—}
0O, —23(S D5 + S1N*) —2R(b1b; — bab3) {L(£%,0);— 2"}
0. —23(S257 + ND*) —25(b1 0} + bab3) {L(i7T ) 2}
C. |Sa]? =] S1*=|N|*+| DJ? —2R(b1b] — bab3) fo Z’}
T, 2R(S195 + ND*) 2§R(b1b — bsb}) {—z;2'}
T, 2R(S1N* + S, D%) 23(by b5 — bsby) {—x;2'}
L, 2R(SyN* — 51 D) 2%(b1b2 + b3b4) {—; 22"}
Lz |S112+|Se|* = |N|*—|D|? 2R(b1b3 — bsb) {22}

Modified format from [164].

Notation in the “Measurement Needed” column is {

P,, Py, Pr} where:

P, = Beam Polarisation, L (#) = linearly polarised at 0 to scattering plane, C =

circularly polarised
P = Direction of target polarisation

Pr = Direction of recoil polarisation measured

polarised beams and targets or the study of recoil particle polarisations.
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Appendix D

PID Light Attenuation Constants

Values for the PID-III light attenuation constants are included in Tables and
D.21
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Appendix E

Tabulated Results

Values for the observables > and C, obtained in the experiment outlined in this

thesis are tabulated in this Appendix for completeness.

E.1 ) Results

The results for ¥ obtained from the analysis of the unscattered data with the
20 missing mass cut applied are tabulated in Tables - [E:3]  The photon
energy point listed, £, refers to the centre of the 10 MeV wide energy bins used.
Similarly, the cos Oy point refers to the centre of the angular bin, each angular
bin has a width of 0.1. Errors quoted are statistical errors. Note that as discussed
in the main text the 555 MeV point is empty due to a dead tagger channel at
this point.
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E.2 (., Results

The results for C,, obtained from the analysis of the scattered data with three and
five cos @y bins are tabulated in Tables and respectively. The photon
energy point listed, ., refers to the centre of the 100 MeV wide energy bins

used. Similarly, the cos §CM point refers to the centre of the angular bin. Errors

quoted are statistical errors.
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Appendix F

Comparison of C/ results to

proposal estimates

C, was calculated in relatively wide angular and energy bins. Both of these issues
are due to the large reduction in available statistics for the case of the scattered
data. This is in part due to the relatively low probability of scattering in the
polarimeter but also due to the fact that results were measured over a shorter
beamtime than initially requested in the experiment proposal [135]. With the
number of scattered particles observed, errors on the values of C,/ are roughly
in line with the values expected from the experimental proposal. The absolute

range of the error in C,, AC,/, is given in the proposal as

AC, = (F.1)

A2N’

where A is the product of the beam polarisation and the effective analysing power
and N is the number of scattered events. Considering the bin centred at 350 MeV
and 0 in cosfcys as an example there are roughly 40000 events in this bin. The
effective analysing power and polarisation in this bin are both ~ 0.1. Using these
values in Equation yields AC,, = 0.707. The observed error in this bin from
the fit to the data was +0.5, i.e. AC, ~ 1.
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Appendix G

Energy Dependence of > Legendre
Fits

To further examine the data for X, the energy dependence of the parameters of the
Legendre fit (defined by Equation ((10.1))) was examined. To assesses this energy
dependence, the parameters, Py ., were plotted as a function of F. and were fitted
with a function consisting of three Gaussians and a Breit-Wigner function. This
function is chosen in order to attempt to provide a smooth, continuous function
to fit the data. The Gaussians were centred at 420 MeV, 520 MeV and 620 MeV
respectively in order to cover the full energy range; the Breit-Wigner was centred
at 570 MeV (y/s = 2378 MeV) with a width of 70 MeV in order to assess the
potential impact of the d*(2380) resonance. The free parameters in this fit were
the amplitudes of each component. These fits were carried out simultaneously
on the parameters P; . using the MINUIT minimisation tool [165]. The fit for
each parameter can be seen as a solid line in Figure where the errors on the
fit are also illustrated as a shaded red area. The fit without the Breit-Wigner
(three Gaussians only) component is also shown in this figure as a dashed line,
the Breit-Wigner component of the fit appears to have a relatively large effect on

the P7, P? and P? components.

The parameters from the energy dependent fits can be used to produce the second
order Legendre Polynomial parameters, P; ., for a given energy. These Legendre
Polynomials can then be fitted to the data for ¥ as a function of cosfcy. An
example of such a fit for both the three Gaussian and Breit-Wigner case (and a fit

based upon fitting seven Gaussians) compared to the original energy-independent
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fit can be seen in Figure[G.2] The three fits are generally in very good agreement
with each other with some slight deviations at the edges. This pattern is observed
across the full energy range as can be seen in Figure

This fitting and analysis is not a definitive fit of the data. It is merely an
attempt to begin to try and examine the energy dependence of the extracted fit
parameters. A full theoretical assessment is required to make any firm conclusions
about the potential impact of the d*(2380) resonance on the energy dependence

of these parameters.
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Figure G.2 X (cosfcm) in one 10 MeV wide E., bin. Demonstrated on the plot
are three fits, the original energy independent and two further fits.
The parameters for these fits were set based upon energy dependent
fits (using three Gaussians and a Breit- Wigner or seven Gaussians)
to the parameters Py . as a function of E..
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