(γ, pp) reactions at Mainz

STATUS OF COHERENT BREMSSTRAHLUNG

Jamie Robinson & Douglas MacGregor

University of Glasgow

A2 Collaboration

Edinburgh, September 2009
Motivation for (γ,pp) Experiment
Scope of the Measurement

Coherent Bremsstrahlung Status
Preliminary Data Analysis
Next Analysis Steps
Motivation for (γ,pp) Reactions

- (γ,pp) reactions proceed via Δ-currents and Short Range Correlations.

- MEC are suppressed and FSI effects are expected to be small, simplifying the interpretation of measurements.
Differential Cross Section

\[\frac{d\sigma}{d\Omega}(\theta, \phi) = \frac{d\sigma}{d\Omega}(\theta)[1 + P\Sigma \cos(2\phi)] \]

where \(P \) is degree of linear photon polarisation

- Photon Asymmetry \(\Sigma \) provides information on the difference between the parallel and perpendicular responses.
- This allows a more detailed comparison with theory and provides an additional handle to separate the contributing mechanisms.
• Pronounced structure in Σ at low E_m in (γ,pp) channel

• Distinct differences observed between (γ,pp) and (γ,pn)

• At low E_m Σ is larger in (γ,pp) than (γ,pn)

=> Direct process, no charge exchange FSI
• Comparison with unfactorised calculations (Ryckebusch et al.) including central and tensor SRC

• Theory fails to properly account for dominant Δ-current parallel and perpendicular contributions

• However, previous (γ,pp) data had poor statistical accuracy, limited E_γ (180-340 MeV) and θ_p coverage (50°-130°)

• Need for better measurements over a wider range of E_γ and θ_p
• Fit experimental data with \(anb \) to calculate photon polarisation

• Enhancement spectrum from 1\(^{\text{st}}\) goniometer setting: Coherent edge at 300 MeV

• Anb does not fit enhancement due to instability with incident beam

• Obtain \(P_{\text{ave}} \sim 50\% \) for \(E_\gamma = 200-300 \text{ MeV} \)
• Σ for coherent π^0 photoproduction known to equal 1
 • Conservation of helicity
 • Independent measurement of beam polarisation can be extracted from clean coherent signal

• High xsec - Clean asymmetry on a run by bun basis

• $P \Sigma \sim 0.62$ for 1st setting
 • $E_\gamma = 200$-300 MeV
Selection of $^{12}\text{C}(\gamma,\pi^0)$ events

- π^0 meson - produced with ~equal probability on protons AND neutrons.

- Select reactions which leave nucleus in ground state

Reconstruct π^0 from $\pi^0 \rightarrow 2\gamma$ decay

\[\Delta E_\pi = E_{\pi}^{\text{cm}}(E_\gamma) - E_{\pi}^{\text{cm}}(\gamma_1\gamma_2) \]

- Coherent peak clearly visible around 0MeV

- Quasifree and incoherent events are shifted to higher missing energies

- Cut on $\Theta_\pi < 45^\circ$ enhances coherent contribution over background processes (xsec forward focussed_
\(^{12}\text{C}(\gamma, \pi^0)\) provides a reliable method to extract photon polarisation

- This extraction succeeds where an \textit{a}n \textit{b} fit to tagger enhancement spectra fails
- i.e. When the incident MAMI beam is unstable and the coherent peak shifts along the tagger during the beamtime

\[\text{Photon Energy (MeV)} \]

\[\text{Enhancement} \]

\[\text{Polarisation} \]

\[E_\gamma \]

\[\text{1}\text{st goniometer setting} \]

\[\text{2}\text{nd goniometer setting (misalignment between beam and collimator)} \]
- Geant4 simulation with phase space generate 'fires' protons from within the target dimensions
- Calculate the energy loss as protons traverse through the Ball (as a function of energy and angle)

- A second correction is required to convert the energy into MeV (rather than “γ tuned” MeV)
- Calibrate proton response in the ball using the kinematically overdetermined p(γ, π⁰) reaction
- Secondary correction depends on the measured proton energy
- independent of angle,
- Define correction factor:
 \[C = \frac{E_{p}^{\text{Diff}}}{E_{p}^{\text{Meas}}} \]
- To correct for proton response
 \[E_{p} = E_{p}^{\text{meas}} \times C + E_{p}^{\text{meas}} \]
- Correction factor determined for each \(E_{p}^{\text{meas}} \) slice
- Can use this information to calibrate missing energy for \(^{12}\text{C}(\gamma, pp)\)
Preliminary Results: Missing Energy

- \(E_m = E_\gamma - T_{p1} - T_{p2} - T_{\text{res}} \)
- Missing Energy very much as expected with proton energy resolution
- Measurement agrees with previous PIPTOF analysis
Preliminary Results: Photon Asymmetry

\[E_m < 40\text{MeV} \]

\[40 < E_m < 70\text{MeV} \]
• Preliminary analysis of $\Sigma(\gamma, pp)$ agrees with previous analyses with slight improvement in statistical accuracy
• Work is ongoing on a maximum likelihood technique which aims to reduce the statistical uncertainty further by a factor of ~ 3
• Investigation of the angular behavior of Σ
• Use information from coherent pion analysis to extract Σ in region of the second coherent peak:

$$400 < E_\gamma < 500\text{MeV}, \ P_{\text{ave}} \sim 0.2$$